• Title/Summary/Keyword: In vitro inoculation

Search Result 204, Processing Time 0.025 seconds

Fermentation of Environmental Friend Total Mixed Ration and Alteration of Rumen Fermentation Characteristics (환경친화적 섬유질 배합사료의 발효와 반추위 발효특성 변화)

  • Ryu, Chae-Hwa;Park, Myung-Sun;Park, Chul;Choi, Nag-Jin;Cho, Sang-Buem
    • Korean Journal of Organic Agriculture
    • /
    • v.25 no.2
    • /
    • pp.461-473
    • /
    • 2017
  • Total mixed ration (TMR) including concentrate diet and roughage together have been used for the ruminant animal. Relatively high concentrations of moisture and water soluble carbohydrate are representative feature of TMR. Those moisture and water can also provide a niche for bacterial growth. Therefore, a possible fermentation of TMR induced by micro-organism is generally accepted. The present study hypothesized that different lactic acid bacteria could alter fermentation of TMR and subsequently rumen fermentation. Three lactic acid bacteria, Lactobacillus paracasei (A), L. plantarum (B) and L. parabuchneri (C), were employed and 7 treatments under full factorial design were compared with control without inoculation. TMR for dairy cow was used. Significant alterations by treatments were detected at lactic acid and butyric acid contents in TMR (p<0.05). Treatment AC (mixture of A and C) and BC (mixture of B and C) showed great lactate production. Great butyrate production was found at treatment C. At in vitro rumen fermentation, treatments B, C and AB (mixture of A and B) showed significantly great total gas production (p<0.05). All treatments except treatments B and AB, showed less dry matter digestibility, significantly (p<0.05). Total volatile fatty acid production at treatment AC was significantly greater than others (p<0.05). In individual volatile fatty acid production, treatment AB and AC showed great acetate and propionate productions, significantly (p<0.05). This study investigated correlation between organic acid production in TMR and rumen volatile fatty acid production. And it was found that butyric acid in TMR had significant negative correlation with acetate, propionate, total volatile fatty acid, AP ratio and dry matter digestibility.

Selection and Efficacy of Soil Bacteria Inducing Systemic Resistance Against Colletotrichum orbiculare on Cucumber

  • Kwack, Min-Sun;Park, Seung-Gyu;Jeun, Yong-Chull;Kim, Ki-Deok
    • Mycobiology
    • /
    • v.30 no.1
    • /
    • pp.31-36
    • /
    • 2002
  • Soil bacteria were screened for the ability to control cucumber anthracnose caused by Colletotrichum orbiculare through induced systemic resistance(ISR). Sixty-four bacterial strains having in vitro antifungal activity were used for selecting ISR-inducing strains in cucumber. Cucumber seeds(cv. Baeknokdadagi) were sown in potting mixtures incorporated with the soil bacteria, at a rate of ca. $10^8$ cells per gram of the mixture. Two week-old plants were then transplanted into the steam-sterilized soil. Three leaf-stage plants were inoculated with a conidial suspension($5{\times}10^5$ conidia/ml) of C. orbiculare. Diseased leaf area(%) and number of lesions per $cm^2$ leaf were evaluated on third leaves of the plants, $5{\sim}6$ days after inoculation. Among 64 strains tested, nine strains, GC-B19, GC-B35, GK-B18, MM-B22, PK-B14, RC-B41, RC-B64, RC-B65, and RC-B77 significantly(P=0.05) reduced anthracnose disease compared to the untreated control. In contrast, some bacterial strains promoted susceptibility of cucumber to the disease. From the repeated experiments using the nine bacterial strains, GC-B19, MM-B22, PK-B14, and RC-B65 significantly(P=0.05) reduced both diseased leaf area(%) and number of lesions per $cm^2$ leaf in at lease one experiment. These strains with control efficacy of $37{\sim}80%$ were determined to be effective ISR-inducing strains.

Solubilization of Rock Phosphates by Alginate Immobilized Cells of Pantoea agglomerans (Alginate에 고정화된 Pantoea agglomerans에 의한 인광석 가용화)

  • Ryu, Jeoung-Hyun;Madhaiyan, Munusamy;Seshadri, Sundaram;Sa, Tong-Min
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.38 no.4
    • /
    • pp.188-193
    • /
    • 2005
  • Pantoea agglomerans immobilized in alginate solubilized four different rock phosphates efficiently under in vitro conditions. The solubilization pattern differed according to the rock phosphate source, where maximum solubilization of Morocco and Tunisia rock phosphates (215.6 and $186.1mg\;P\;L^{-1}$) on 6 days, Israel rock phosphate ($60.98mg\;P\;L^{-1}$) and tricalcium phosphate ($132.3mg\;P\;L^{-1}$) on 10 days and China rock phosphate ($48.8mg\;P\;L^{-1}$) on 12 days after inoculation was observed. The shelf life of the immobilized bacteria immobilized beads stored in two different temperatures was studied for six months. Beads stored at both room temperature as well as cold storage ($4^{\circ}C$) were found equally good in supporting the bacterial population as well as phosphate solubilizing activity. P. agglomerans immobilized in alginate might be exploited for large scale biosolubilization of rock phosphates intended for fertilizer use.

Efficacy of Disinfectants against Health-Associated Multi-drug Resistant Clinical Isolates

  • An, Jeong-Lib;Kim, Sang-Ha;Yu, Young-Bin;Kim, Sunghyun;Lee, Moo-Sik;Kim, Young-Kwon
    • Biomedical Science Letters
    • /
    • v.27 no.4
    • /
    • pp.264-269
    • /
    • 2021
  • The purpose of this study was to evaluate the disinfecting efficacy of peracetic acid (PAA), sodium hypochlorite (NaOCl) and phenol, which are representative disinfectants in medical environments using four types of multi-drug resistance (MDR) clinical isolates with healthcare-associated infections (HAI). 26 antibiotic susceptibility tests were conducted for the four types of MDR clinical isolates in the same way as for clinical specimens. The minimum inhibitory concentration (MIC) and the minimum bactericidal concentration (MBC) of the disinfectants were determined by using in vitro liquid medium dilution method and inoculation of the plate medium. Both the MIC and MBC of phenol against MRSA and VRE were 3.1%, while those against KPC and MRPA were 6.2%. The MIC and MBC of peracetic acid (PAA) against MRSA, VRE, KPC, and MRPA were 0.18%. The MIC and MBC of sodium hypochlorite (NaOCl) against MRSA were 0.39% and 0.78%, respectively. Both values of MIC and MBC were 0.78% for VRE. In addition, KPC and MRPA showed 0.39% for MIC and 0.78% for MBC. For all MDR strains used in this study, sodium hypochlorite and peracetic acid showed significant sterilizing efficiency, while no clear correlation was identified between antibiotic resistance clinical isolated and ability of disinfection.

Chemical Resistance of Diaporthe citri against Systemic Fungicides on Citrus

  • Zar Zar Soe;Yong Ho Shin;Hyun Su Kang;Yong Chull Jeun
    • The Plant Pathology Journal
    • /
    • v.39 no.4
    • /
    • pp.351-360
    • /
    • 2023
  • Citrus melanose, caused by Diaporthe citri, has been one of the serious diseases, and chemical fungicides were used for protection in many citrus orchards of Jeju Island. Establishing a disinfectant resistance management system and reducing pesticide usage would be important for contributing to safe agricultural production. In this study, monitoring of chemical resistance was performed with 40 representative D. citri isolates from many citrus orchards in Jeju Island. Four different fungicides, kresoxim-methyl, benomyl, fluazinam, and prochloraz manganese, with seven different concentrations were tested in vitro by growing the mycelium of the fungal isolates on the artificial medium potato dextrose agar. Among the 40 fungal isolates, 12 isolates were investigated as resistant to kresoxim-methyl which could not inhibit the mycelium growth to more than 50%. Especially isolate NEL21-2 was also resistant against benomyl, whose hyphae grew well even on the highest chemical concentration. However, any chemical resistance of fungal isolates was found against neither fluazinam nor prochloraz manganese. On the other hand, in vivo bio-testing of some resistant isolates was performed against both kresoxim-methyl and benomyl on young citrus leaves. Typical melanose symptoms developed on the citrus leaves pre-treated with both agrochemicals after inoculation with the resistant isolates. However, no or less symptoms were observed when the susceptible isolates were inoculated. Based on these results, it was suggested that some resistant isolates of D. citri occurred against both systemic fungicides, which may be valuable to build a strategy for protecting citrus disease.

Effect of Addition of Chlorella and Lactic Acid Bacteria on Nutritive Value and Fermentation Quality of Fresh Rice Straw Silage (젖산균과 클로렐라 첨가가 생볏짚 사일리지의 사료가치 및 발효품질에 미치는 영향)

  • Choi, Ki Choon;Ilavenil, Soundarrajan;Arasu, Mariadhas Valan;Park, Hyung-Su;Kim, Won-Ho
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.35 no.2
    • /
    • pp.159-165
    • /
    • 2015
  • Fresh rice straw silage (RSS) was prepared with lactic acid bacteria (LAB) and chlorella (CA) at the experimental field of National Institute of Animal Science, Cheonan Province, Korea. This experiment consisted of the following eight treatments: control treatment without CA and LAB; treatment of 0.1% CA applied without LAB; treatment of 0.5% CA applied without LAB; treatment of 1.0% CA applied without LAB; treatment of only LAB inoculation without CA; treatment of 0.1% CA inoculated with LAB; treatment of 0.5% CA inoculated with LAB; and treatment of 1.0% CA inoculated with LAB. The content of crude protein of RSS significantly elevated with increased concentration of CA (p<0.05). The levels of acid detergent fiber (ADF), neutral detergent fiber (NDF), total digestible nutrient (TDN), and in vitro dry matter digestibility (IVDMD) showed no significant improvement in all treatments when compared to control. However, the quantity of lactic acid in RSS increased in CA and LAB alone inoculated treatments. Similarly, lactic acid significantly increased in LAB with CA treatments when compared to control. In addition, the number of LAB in LAB treatment increased as compared to control and significantly increased by an increase of CA concentration (p<0.05). Therefore, the nutritive values and quality of RSS can be improved by the addition of CA.

Selection of Fungicides for the Control of Soybean Black Root Rot Caused by Calonectria ilicicola (콩 검은뿌리썩음병 방제를 위한 살균제 선발)

  • Park, Seong-Woo;Kang, Beom-Kwan;Kim, Hong-Sik;Woo, Sun-Hee;Kim, Heung-Tae
    • The Korean Journal of Pesticide Science
    • /
    • v.11 no.1
    • /
    • pp.18-26
    • /
    • 2007
  • Fungicidal screening was performed to control soybean black root rot caused by Calonectria ilicicola through in vitro and greenhouse assays. In in vitro assay, 25 fungicides were assessed by an agar dilution method and a 96-well microtiter plate method. While protective fungicides including dithianon, dichlofluanid, mancozeb, and captan showed a very low activity against the mycelial growth C. ilicicola SC03-15 in the agar dilution method, they displayed potent inhibitory activity against spore germination in a 96-well microtiter plate method with $EC_{50}$ values of 4.65, 0.61, 4.64, and $0.29{\mu}g\;mL^{-1}$, respectively. Ergosterol biosynthesis-inhibiting (EBI) fungicides showed different antifungal activity against mycelial growth and spore germination according to molecules. Difenconazole displayed higher antifungal activity against spore germination rather than mycelial growth, and prochloraz inhibited potently both mycelial growth and spore germination with EC50 values less than $1.8{\mu}g\;ml^{-1}$. In contrast, the other EBI fungicides inhibited more highly mycelial growth than spore germination. Carbendazim+diethofencarb and dazomet also inhibited both mycelial growth and spore germination of C. ilicicola SC03-15 at very low concentrations. In greenhouse assay, carbendazim+diethofencarb effectively controlled a soybean black root rot by drenching 2 days before or after inoculation. In addition, tebuconazole showed potent curative activity against soybean black root rot.

Isolation and Characterization of Plant Pathogen that Cause Soft Rot Disease in Napa Cabbage (배추무름병 원인균 분리 및 특성 연구)

  • Kwon, Young-Hee;Yoo, Ah-Young;Yu, Jong-Earn;Kang, Ho-Young
    • Journal of Life Science
    • /
    • v.19 no.8
    • /
    • pp.1177-1182
    • /
    • 2009
  • In order to establish in vitro infection model for research of plant pathogen based on tissue softening disease in napa cabbage, eighty independent bacterial strains were isolated from the softened napa cabbage tissues. Eight bacterial isolates were primarily screened with the generation of reproducible tissue softening disease to fresh napa cabbages within 24${\sim}$48 hours after inoculation. Through various microbiological biochemical and morphological examinations, three Gram (-) isolates which harbor independent biological properties were finally chosen, and named as RBI, RB2 and RB6. Collective results obtained from API 20E test and analyses of VITEK 2 COMPACT and nucleotide sequences of 165 rRNA of each isolate proposed that isolates RBI and RB2 are close to the Erwinia carotovora subsp. odorifera, and RB6 is close to the Erwinia carotovora subsp. carotovora. These isolates grew optimally at $30^{\circ}C$ with neutral pH culture condition. The isolates caused softening tissue disease with dose-dependent manner regardless of pre-surface damages of napa cabbage. Minimum dose to cause soft rot disease for RBI, RB2 or RB6 were $8.0{\times}10^8$ CFU/mt $10^9$ CFU/ml or $4.7{\times}10^6$ CFU/ml respectively. These isolates caused tissue softening disease to eggplant, paprika and napa cabbage out of 14 different tested vegetables, indicating that these isolates damages specific plant tissues. The bacterial isolates obtained in this research and in vitro plant infection model will be adapted in the understanding of the mechanism of pathogenesis by plant pathogen.

Foliar Application of Extract from an Azalomycin-Producing Streptomyces malaysiensis Strain MJM1968 Suppresses Yam Anthracnose Caused by Colletotrichum gloeosporioides

  • Palaniyandi, Sasikumar Arunachalam;Yang, Seung Hwan;Suh, Joo-Won
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.6
    • /
    • pp.1103-1108
    • /
    • 2016
  • Yam anthracnose caused by Colletotrichum gloeosporioides (C.g) is the most devastating disease of yam (Dioscorea sp.). In the present study, we evaluated the culture filtrate extract (CFE) of azalomycin-producing Streptomyces malaysiensis strain MJM1968 for the control of yam anthracnose. MJM1968 showed strong antagonistic activity against C.g in vitro. Furthermore, the MJM1968 CFE was tested for inhibition of spore germination in C.g, where it completely inhibited spore germination at a concentration of 50 μg/ml. To assess the in planta efficacy of the CFE and spores of MJM1968 against C.g, a detached leaf bioassay was conducted, which showed both the treatments suppressed anthracnose development on detached yam leaves. Furthermore, a greenhouse study was conducted to evaluate the CFE from MJM1968 as a fungicide for the control of yam anthracnose. The CFE non-treated plants showed a disease severity of >92% after 90 days of artificial inoculation with C.g, whereas the disease severity of CFE-treated and benomyl-treated yam plants was reduced to 26% and 15%, respectively, after 90 days. Analysis of the yam tubers from the CFE-treated and non-treated groups showed that tubers from the CFE-treated plants were larger than that of non-treated plants, which produced abnormal smaller tubers typical of anthracnose. This study demonstrated the utility of the CFE from S. malaysiensis strain MJM1968 as a biofungicide for the control of yam anthracnose.

Immune gene expression and protection effect against VHSV by injection of interferon regulatory factor 10 in zebrafish (Danio rerio) (제브라피쉬 interferon regulatory factor 10의 주사에 따른 면역 유전자 발현과 VHSV에 대한 방어 효과)

  • Kim, Hye Ji;Kim, Jin Young;Park, Jong Bin;Lee, Ji Hyun;Park, Jeong Su;Kim, Hyoung Jun;Kwon, Se Ryun
    • Journal of fish pathology
    • /
    • v.34 no.1
    • /
    • pp.23-29
    • /
    • 2021
  • Interferon regulatory factors (IRFs) are a family of transcription factors essential to the control of antiviral immune response, cell growth, differentiation and apoptosis. IRF10 of zebrafish (Danio rerio) was negative regulation of the interferonΦ1 and 3 response in vitro. In this study, we analyze the induction of in vivo immune response activation from the IRF10 gene of zebrafish and the protective effect against VHSV. As the results, the group inoculated with IRF10 expression vectors, there was no expression of IFNΦ1, suggestion that IRF10 may function as a negative regulator of IRF3, which binds to the IFNΦ1 promoter. And other types of interferon genes (IFNΦ2-4) are thought to have been activated, inducing to the expression of pro-inflammatory cytokine and Mx genes. As the results of challenge test performed at 14 days after inoculation of the expression vectors, the maximum survival rate [50% (1㎍ DNA) and 42.5% (10㎍ DNA)] for IRF10 group were recorded. Meanwhile, the survival rates of pcDNA3.1 and PBS as the control groups were 10% and 15%, respectively. This study suggests that the possibility that activation of IRF10 molecule could be exploited as a VHS control method.