• Title/Summary/Keyword: In vitro Maturation (IVM)

Search Result 222, Processing Time 0.028 seconds

Development of a Chemically Defined In Vitro Maturation System for Porcine Oocytes: Application for Somatic Cell Nuclear Transfer

  • Koo, Ja-Min;Won, Cheol-Hee;Min, Byung-Moo;Roh, Sang-Ho
    • International Journal of Oral Biology
    • /
    • v.30 no.4
    • /
    • pp.131-134
    • /
    • 2005
  • In the present study, performances of several in vitro maturation (IVM) systems for porcine follicular oocytes were evaluated, and an efficient chemically defined IVM system for porcine oocytes was proposed. The proposed one-step culture system supplemented with polyvinylalcohol (PVA) gave competitive efficiencies in terms of oocyte maturation and blastocyst development after parthenogenetic activation and in vitro culture, compared with the conventional two-step culture system by a supplementation of porcine follicular fluid (pFF). Additionally, it is identified that the proposed chemically defined one-step culture system yielded the comparable level of blastocyst production to the conventional maturation system in porcine somatic cell nuclear transfer (SCNT). Therefore, one can eliminate un-expected effects accompanied by supplementation of pFF. No medium replacement during whole maturation period is an additional benefit by applying this new system. Thus, these data support that the developed PVA supplemented chemically defined one-step IVM system for porcine follicular oocyte might be used in porcine SCNT program.

Production Efficiency of In Vitro Fertilized Embryos by Different Maturation Periods and Culture Systems in Korean Native Cattle (체외성숙시간 및 배양방법에 따른 한우 체외수정란의 생산효율)

  • 노규진;강태영;이효종;박충생;최상용
    • Journal of Embryo Transfer
    • /
    • v.11 no.3
    • /
    • pp.241-248
    • /
    • 1996
  • This study was conducted to improve the production efficiency of in vitro produced (IVP) embryos in Korean Native cows. The optimal conditions and procedures for in vitro maturation(IVM), in vitro fertilization(IVF) and in vitro culture(IVC) of bovine follicular oocytes and IVP embryos were evaluated. Immature follicular oocytes were collected fiom the follicles of bovine ovaries obtained from abattoirs. The oocytes of Grade I and II for IVM were cocultured with monolayered bovine oviductal epithelial cells(BOEG) or granulosa cells in TCM-199 solution supplemented with follicle stimulating hormone, lutenizing hormone, estradiol-17$\beta$ and heat inactivated fetal calf serum at 39$^{\circ}C$ under 5% $CO_2$ in air for 14 to 24 hours. Most of the oocytes(93%) matured to metaphase II in 24 hours. The cocultured IVM oocytes were fertilized in vitro at significantly(P<0.05) higher rate with BOEC(83.8%) and with granulosa cells(84.6%) than the non-cocultured IVM oocytes(73.6%). The IVM-IVF embryos developed to morula and blastocyst at significantly(P<0.05) higher rate in coculture with BOEC(41.2%) than with granulosa cells(23.1%) or conditioned medium(23.4%).

  • PDF

In vitro maturation using αMEM with reduced NaCl enhances maturation and developmental competence of pig oocytes after somatic cell nuclear transfer

  • Lee, Yongjin;Lee, Joohyeong;Hyun, Sang-Hwan;Lee, Geun-Shik;Lee, Eunsong
    • Journal of Veterinary Science
    • /
    • v.23 no.2
    • /
    • pp.31.1-31.13
    • /
    • 2022
  • Background: Compared to medium containing 108 mM sodium chloride (NaCl), in vitro maturation (IVM) using a simple medium with reduced (61.6 mM) NaCl increases the cytoplasmic maturation and embryonic development of pig oocytes. Objectives: This study determines the effect of a complex medium containing reduced NaCl on the IVM and embryonic development of pig oocytes. Methods: Pig oocytes were matured in Minimum Essential Medium Eagle-alpha modification (αMEM) supplemented with 61.6 (61αMEM) or 108 (108αMEM) mM NaCl, and containing polyvinyl alcohol (PVA) (αMEMP) or pig follicular fluid (PFF) (αMEMF). Medium-199 (M199) served as the control for conventional IVM. Cumulus cell expansion, nuclear maturation, intra-oocyte glutathione (GSH) contents, size of perivitelline space (PVS), and embryonic development after parthenogenesis (PA) and somatic cell nuclear transfer (SCNT) were evaluated after IVM. Results: Regardless of PVA or PFF supplementation, oocytes matured in 61αMEM showed increased intra-oocyte GSH contents and width of PVS (p < 0.05), as well as increased blastocyst formation (p < 0.05) after PA and SCNT, as compared to oocytes matured in 108αMEMP and M199. Under conditions of PFF-enriched αMEM, SCNT oocytes matured in 61αMEMF showed higher blastocyst formation (p < 0.05), compared to maturation in 108αMEMF and M199, whereas PA cultured oocytes showed no significant difference. Conclusions: IVM in αMEM supplemented with reduced NaCl (61.6 mM) enhances the embryonic developmental competence subsequent to PA and SCNT, which attributes toward improved oocyte maturation.

The Effects of Transcription / Translation Inhibitors on Meiotic Maturation of Porcine Oocyte In Vitro

  • Byun, Tae-Ho;Lee, Sung-Ho;Park, Chang-Sik;Lee, Sang-Ho
    • Proceedings of the Korean Society of Embryo Transfer Conference
    • /
    • 2002.11a
    • /
    • pp.117-117
    • /
    • 2002
  • The oocytes from most of animal species accumulate genetic information and other necessary materials during oogenesis for the later use in the early development. Over the years oocyte maturation has been studied extensively both in vitro and in vivo. Particularly, maturation of follicular oocyte in vitro becomes one of the important tools for the studies of basic cell biology, the in vitro technology of animal production, and in particular, the somatic cell cloning by nuclear transfer. We examined meiotic maturation and cumulus expansion in the presence of translation or transcription inhibitors for varying periods of in viかo maturation (IVM) of pig oocyte. In Experiment 1, the results revealed that translation and transcription inhibitors inhibited cumulus expansion and meiotic maturation during 35h of IVM. However, 50 to 60% of the oocytes underwent nuclear maturation without cumulus expansion during 75h of IVM. The rest of the oocytes were arrested at metaphase I (40-50%) in the presence of the inhibitors. In Experiment II, the OCCs were exposed to the drugs only for 15h to examine translation and transcription inhibitors on cumulus expansion and meiotic maturation. Transcription inhibitors for 15h did not arrest meiotic maturation when the oocytes were cultured for subsequent, necessary period of IVM, whereas cumulus expansion was completely inhibited, suggesting that initial 15h is critical transcription activity far cumulus expansion. Translation inhibitors for 15h exposure did not alter cumulus expansion and meiotic maturation during subsequent culture in the absence of the drugs. In Experiment III, the OCCs were exposed to the drugs only for later 30h to examine the influence of transcription and translation inhibitors on oocyte maturation. Interestingly, all meiotic maturation underwent normally with full expansion of cumulus. Similar results were obtained from Experiment IV where 5h of exposure from 15 to 20h of IVM culture to the drugs was performed and subsequently cultured for same period in fresh medium. Taken there results together, both transcription and translation are necessary for nuclear maturation and cumulus expansion, and first 15h IVM for cumulus expansion is critical. The arrested oocytes by the drugs were still capable of undergoing nuclear maturation, although cumulus expansion was affected.

  • PDF

The Effects of 3-Isobutyl-1-methylxanthine (IBMX) on Nuclear and Cytoplasmic Maturation of Porcine Oocytes In Vitro

  • Kwak, Seong-Sung;Jang, Seung-Hoon;Jeong, Se-Heon;Jeon, Yubyeol;Biswas, Dibyendu;Hyun, Sang-Hwan
    • Journal of Embryo Transfer
    • /
    • v.27 no.3
    • /
    • pp.163-169
    • /
    • 2012
  • The 3-isobutyl-1-methylxanthine (IBMX) is non-selective phosphodiesterase and is able to prevent resumption of meiosis by maintaining elevated cyclic AMP (cAMP) concentrations in the oocyte. The present study was conducted to analyze: (1) nuclear maturation (examined by the Hoechst staining), (2) whether cytoplasmic maturation (examined by the intracellular glutathione (GSH) concentration) of porcine oocytes is improved during meiotic arrest after prematuration (22 h) with IBMX. Before in vitro maturation (IVM), oocytes were treated with 1 mM IBMX for 22 h. After 22 h of pre-maturation, the higher rate of IBMX treated group oocytes were arrested at the germinal vesicle (GV) stage (42.3%) than control IVM oocytes (10.1%). It appears that the effect of IBMX on the resumption of meiosis has shown clearly. In the end of IVM, the reversibility of the IBMX effect on the nuclear maturation has been corroborated in this study by the high proportions of MII stage oocytes (72.5%) reached after 44 h of IVM following the 22 h of inhibition. However, intracellular GSH concentrations were lower in the oocytes treated with IBMX than the control oocytes (6.78 and 12.94 pmol/oocyte, respectively). These results demonstrate that cytoplasmic maturation in porcine oocytes pre-treated with IBMX for 22 h did not equal that of control oocytes in the current IVM system. These results indicate that pre-maturation with IBMX for 22 h may not be beneficial in porcine IVM system.

The Effects of Resveratrol on Oocyte Maturation and Preimplantation Embryo Development

  • Kwak, Seong-Sung;Hyun, Sang-Hwan
    • Journal of Embryo Transfer
    • /
    • v.27 no.2
    • /
    • pp.71-80
    • /
    • 2012
  • Biotechnologies for cloning animals and in vitro embryo production have the potential to produce biomedical models for various researches. Especially, pigs are a suitable model for xenotransplantation, transgenic production and various areas of reproductive research due to its physiological similarities to human. However, utilization of in vitro-produced embryos for transfer remains limited. Despite improvement over past few decades, obstacles associated with the production of good quality embryos in vitro still exist which limit the efficiency of cloning. One of major problems includes improper in vitro maturation (IVM) and culture (IVC). Oxidative stress caused from in vitro culture conditions contributes to inadequate IVM and IVC which leads to poor developmental competence of oocytes, failure of fertilization and embryo development. To reduce the oxidative stress, various antioxidants have been used to IVM and IVC system. However, limited information is available on the effects of resveratrol on livestock reproductions. Resveratrol is a polyphenolic natural product and well known as an antioxidant in foods and beverages (e.g. in grapes and red wine). Resveratrol is known to be cardioprotective, anticarcinogenic, anti-inflammatory, antioxidant and antiapoptotic. This paper will review the effects of resveratrol on in vitro maturation of oocytes and embryo development.

3-Hyroxyflavone in Maturation Medium Supports In Vitro Development of Fertilized Bovine Follicular Oocytes

  • Kim, Se-Woong;Park, Jong-Im;Jung, Yeon-Gil;Roh, Sangho
    • Reproductive and Developmental Biology
    • /
    • v.38 no.4
    • /
    • pp.143-146
    • /
    • 2014
  • Antioxidants, as reactive oxygen species scavengers, are one of the beneficial additives in serum-free defined culture medium. In this study, three separate experiments were performed to determine the effects of 3-hyroxyflavone added to the culture medium on the developmental competence of follicular bovine oocytes during in vitro maturation (IVM) and/or in vitro culture (IVC). The rate of blastocyst developed from oocytes cultured in IVM medium with 3-hyroxyflavone was significantly higher than that from control oocytes (39.0% vs. 26.3%, p<0.001), respectively. However, oocytes cultured in the medium with addition of 3-hyroxyflavone only at IVC period did not show significance in the blastocyst development when compared with control. When 3-hyroxyflavone was added to both IVM and IVC media, the rate of blastocyst formation was even significantly lower (21.1%) than control (26.5%; p<0.05). The present findings suggested that antioxidative activity of 3-hydroxyflavone added to only IVM medium beneficially affected the developmental competence of follicular bovine.

Pituitary Adenylate Cyclase-activating Polypeptide (PACAP) Treatment during Pre-maturation Increases the Maturation of Porcine Oocytes Derived from Small Follicles

  • Park, Kyu-Mi;So, Kyoung-Ha;Hyun, Sang-Hwan
    • Journal of Embryo Transfer
    • /
    • v.33 no.1
    • /
    • pp.1-11
    • /
    • 2018
  • Cellular cyclic adenosine-3' 5'-monophosphate (cAMP) modulator is known as meiotic inhibitor and can delays spontaneous maturation in IVM experiment. Among many cAMP modulators, the role of Pituitary adenylate cyclase activating polypeptide (PACAP) on IVM isn't known. The purpose of this study is to improve the maturation of oocytes derived from follicles ${\leq}3mm$ in diameter through PACAP as meiotic inhibitor during pre-in vitro maturation (pre-IVM). First, we checked PACAP and its receptors in cumulus cells and, to establish the optimal phase and concentration of PACAP for pre-IVM, we conducted chromatin configuration assessments. As a result, the rate of GV (Germinal Vesicle) according to duration of pre-IVM was significantly decreased 12 h and 18 h after IVM (87.1 and 84.1%, respectively) compared to 0 h (99.4%). When COC was cultured for 18 h, the GV rate in the $1{\mu}M$ of PACAP treatment group (82.1%) was significantly higher than any other PACAP treatment groups (60.5, 64.1, 74.4 and 69.9 %, respectively). So, we divided into four groups as follows; MF (the conventional IVM group, obtained from follicle from 3 to 6 mm in diameter), SF (the conventional IVM group, obtained from follicle ${\leq}3mm$ in diameter), Pre-SF(-)PACAP (IVM group including 18 h pre-IVM without $1{\mu}M$ of PACAP, obtained from follicle ${\leq}3mm$ in diameter) and Pre-SF(+)PACAP (IVM group including 18 h pre-IVM with $1{\mu}M$ of PACAP, obtained from follicle ${\leq}3mm$ in diameter). To examine the effect of PACAP during pre-IVM, we investigated analysis of nuclear maturation, intracellular glutathione (GSH) and reactive oxygen species (ROS) levels. In cumulus cells, PACAP receptors, ADCYAP1R1 and VIPR1 were detected but were not detected in oocytes. After IVM, the Pre-SF(+)PACAP had the highest Metaphase II rate (91.7%) among all groups (P<0.05). The GSH levels in the MF and Pre-SF(+)PACAP were significantly higher than in the other groups (P<0.05) and ROS levels was no significant difference among all groups. In conclusion, these results indicated that even though the oocytes were derived from SF, pre-IVM application of PACAP improved meiotic and cytoplasmic maturation by regulating intracellular oxidative stress.

High efficiency of homemade culture medium supplemented with GDF9-β in human oocytes for rescue in vitro maturation

  • Mohsenzadeh, Mehdi;Khalili, Mohammad Ali;Anbari, Fatemeh;Vatanparast, Mahboubeh
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.49 no.2
    • /
    • pp.149-158
    • /
    • 2022
  • Objective: Optimizing culture media for the incubation of immature oocytes is a vital strategy to increase the oocyte maturation rate during in vitro maturation (IVM) programs. This study evaluated the IVM and fertilization rates of human germinal vesicle (GV) and metaphase I (MI) oocytes using two different maturation media (commercial and homemade) with or without growth differentiation factor 9-β (GDF9-β). supplementation. Methods: Immature oocytes from intracytoplasmic sperm injection (ICSI) cycles were collected and assigned to one of two IVM culture media (commercial or homemade; cleavage-stage base). After maturation, MII oocytes were examined under an inverted microscope for the presence of the polar body, zona pellucida (ZP) birefringence, and meiotic spindle (MS) visualization after maturation in four conditions (commercial or homemade medium, with or without GDF9-β. ICSI was done for matured oocytes, and fertilization was confirmed by the visualization of two distinct pronuclei and two polar bodies. Results: No significant differences were found between the two culture media in terms of the time and rate of oocyte maturation or the rate of fertilization (p>0.05). Growth factor supplementation increased the 24-hour maturation rate for both GV and MI oocytes only in homemade medium. The maturation rate after 24 hours was higher for MI oocytes (p<0.05). Similar results were observed for MS visualization and ZP structure in both types of media (p>0.05). Conclusion: Higher rates of oocyte maturation and fertilization were observed after application of homemade medium supplemented with GDF9-β. Therefore, this combination may be recommended as an alternative for clinical IVM programs.

Effect of Gonadotropins added during Maturation of Porcine Oocytes on the In Vitro Maturation, In Vitro Fertilization and Development of Embryos (돼지 난포란의 체외성숙시 성선자극호르몬의 첨가가 체외성숙, 체외수정 및 배발생에 미치는 영향)

  • 이장희;김창근;정영채
    • Journal of Embryo Transfer
    • /
    • v.9 no.1
    • /
    • pp.85-93
    • /
    • 1994
  • This study was carried out to investigate the effects of gonadotropins added during maturation of porcine oocytes on the in vitro maturation(IVM), in vitro fertilization(IVF) and developmental potential of embryos. The follicular oocytes were cultured in TCM-199 medium containing different combination of gonadotropins(5$\mu$g /ml FSR or 1OIU /ml PMSG and 1O$\mu$g /ml LH or 1OIU /ml hCG), 10% FCS and 10% PFF for 36~48h in a incubator with 5% $CO_2$ in Air at 39$^{\circ}C$ and then matured oocytes were again cultured to 120h after IVF for 6~7h with heparin(100$\mu$g /m')-treated sperm. When the oocytes were matured for 42brs in the medium containing FSH+LH, FSH+hCG, PMSG+LH or PMSG+hCG, the JVF rate of each treatment was 50.0%, 52.9%, 66.7% and 70.0%, respectively. The highest CEI (cumulus cell expansion index) was obtained from PMSG+hCG-added medium and the highest polyspermic penetration resulted from FSH+LH-added medium. The cleavage of IVF oocytes derived from hormone added IVM was significantly(P<0.05) promoted by PMSG+hCG and the cleavage rate after 36-h, 42-h and 48-h maturation aws 53.0%, 56.7% and 45.6%, respectively. The highest developmental potential resulted from the oocytes derived from PMSG+LH -added IVM.

  • PDF