• Title/Summary/Keyword: In situ Disappearance

Search Result 58, Processing Time 0.031 seconds

Supplementing Maize or Soybean Hulls to Cattle Fed Rice Straw:Intake, Apparent Digestion, In situ Disappearance and Ruminal Dynamics

  • Von, Nguyen Tien;St. Louis, David G.;Orr, Adam I.;Rude, Brian J.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.21 no.6
    • /
    • pp.807-817
    • /
    • 2008
  • Steers with ad libitum access to rice straw were assigned to four diets to evaluate the effects of maize or soybean hull supplementation on intake, in vivo digestibility, ruminal pH, VFA, ammonia-nitrogen ($NH_3-N$) and in situ ruminal disappearance of feed nutrients by cattle consuming rice straw. Supplement treatments were: no supplement (RS); soybean meal at 0.127% BW (SBM); cracked maize at 0.415% BW plus 0.044% BW soybean meal (MAIZE); or soybean hulls at 0.415% BW plus 0.044% BW soybean meal (HULLS). The MAIZE and HULLS diets were formulated to provide approximately 4 MJ of $NE_m$ per kg of diet. Rice straw DMI was not affected (p = 0.34) by supplement. Apparent dry matter (DM) digestibility was greater (p<0.001) for MAIZE and HULLS (56.6 and 60.0%, respectively) than for steers consuming SBM or RS (51.8 and 44.4%, respectively). Apparent NDF digestibility was greater (p<0.0004) for HULLS than MAIZE (61.7 vs. 58.0%, respectively) and apparent ADF digestibility was greater (p<0.0008) for HULLS than MAIZE (61.1 vs. 49.2%, respectively). There was no difference in apparent hemicellulose digestibility (p = 0.43). Analysis of ruminal fluid collected 0, 2, 4, 6, and 8 h post-feeding revealed ammonia-nitrogen was greatest (p<0.05) for steers on SBM and HULLS diets at 2 h (24.08 and 22.57 mg/dl, respectively) and total volatile fatty acids was greatest (p<0.05) for HULLS at 4 h (230 mM/L). In situ disappearance, measured at 0, 2, 4, 6, 8, 16 and 24 h, indicated that SBM, MAIZE and HULLS tended to enhance the digestibility of DM and fiber components of rice straw. In situ disappearance of rice straw DM was greatest for SBM and/or HULLS from 4 to 24 h (p = 0.03). Rice straw NDF and ADF disappearance was enhanced by supplementation from 16 to 24 h (p<0.02). Rice straw DM, NDF and ADF disappearances at 24 h were similar for MAIZE and HULLS treatments. When feeding cattle rice straw diets, energy and protein-based supplements are essential. This study showed that fiber-based supplements are just as, if not more, effective as starch-based supplements in rice straw utilization. This study shows that soybean hulls, in spite of their high fiber content, are as efficient as maize for supplementing rice straw primarily because fiber in soybean hulls is highly digestible as shown by in vivo digestibility and in situ disappearance.

Effects of Synbiotics Containing Anaerobic Microbes and Prebiotics on In vitro Fermentation Characteristics and In situ Disappearance Rate of Fermented-TMR

  • Lee, Shin-Ja;Shin, Nyeon-Hak;Chu, Gyo-Moon;Lee, Sung-Sill
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.24 no.11
    • /
    • pp.1577-1586
    • /
    • 2011
  • This study was carried out to estimate effects of synbiotics containing anaerobic microorganisms and prebiotics on in vitro fermentation characteristics and in situ disappearance rate of fermented total mixed ration (F-TMR). For the in vitro trial, ninety vinyl bags were prepared to analyze temperature, pH, ammonia concentration, microbial growth rate and short chain fatty acid concentration. For the in situ trial, one hundred twenty nylon bags were prepared to analyze dry matter (DM), acid detergent fiber (ADF) and neutral detergent fiber (NDF) disappearance rate. Treatments consisted of a basal diet (US) with prebiotics and probiotics from anaerobic mold (MS), bacteria (BS), yeast (YS) or compound (CS). It was found that temperatures at 14 and 21 days were significantly higher (p<0.05) in the YS and CS than in the others. The pH at 21 days was lower in the CS than in the US. The synbiotic treatments had significantly increased (p<0.05) ammonia concentration at 21 days. The DM disappearance at 72 h was significantly higher (p<0.05) in the MS and CS than in the others. ADF and NDF disappearance rate tended to increase at a rate similar to the DM disappearance rate. Therefore, this study suggests that synbiotics (probiotics with prebiotics) may partially help the quality of fermentation and digestibility of TMR (MS and CS) as fiber disappearance.

Effects of Tween 80 Pretreatment on Dry Matter Disappearance of Rice Straw and Cellulolytic Bacterial Adhesion

  • Lee, Chan Hee;Sung, Ha Guyn;Eslami, Moosa;Lee, Se Young;Song, Jae Y.;Lee, Sung Sill;Ha, Jong K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.20 no.9
    • /
    • pp.1397-1401
    • /
    • 2007
  • An in situ experiment was conducted to find out whether Tween 80 improves rice straw digestion through increased adhesion of major fibrolytic bacteria. Rice straw was sprayed with various levels of Tween 80 non-ionic surfactant or SDS ionic surfactant 24 h before incubation in the rumen of Holstein steers. Dry matter (DM) disappearance and adhesion of F. succinogenes, R. flavefaciens and R. albus on rice straw after in situ incubation were measured by real-time PCR. Application of Tween 80 increased DM disappearance, which was more noticeable at an application level of 1% compared to lower application levels. Application of SDS resulted in an opposite response in DM disappearance with highest reduction in DM disappearance at 1% level. In a subsequent in situ experiment, higher Tween 80 was applied to rice straw in an attempt to find the optimum application level. Tween 80 at 2.5% gave better DM disappearance than 1% with a similar result at 5%. Therefore, an adhesion study was carried out using rice straw treated with 2.5% Tween 80. Our results indicated that Tween 80 reduced adhesion of all three major rumen fibrolytic bacteria to rice straw. Present data clearly show that improved DM disappearance by Tween 80 is not due to increased bacterial adhesion onto substrates.

Evaluations of Nutrient Compositions and In Situ Ruminal Disappearance Rates of Roughage Sources Commonly Used in Korea (국내 이용 주요 조사료원의 영양소 함량 및 반추위 In situ 소실율 평가)

  • Na, Young Jun;Lee, Kyung Won;Hong, Kyung Hee;Lim, Jong Soo;Kim, Myeong Hwa;Kim, Kyeong Hoon;Lee, Sang Rak
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.33 no.4
    • /
    • pp.269-274
    • /
    • 2013
  • This study is conducted to estimate the nutrient compositions and in-situ ruminal disappearancerates of roughage sources which are commonly used in South Korea. Twelve types of roughage sources are being selected based on surveys from more than 50 farms, and 12 samples from various farms and companies are collected and analyzed for their nutritive components and minerals. Two Hanwoo steers (BW $526{\pm}14$ kg) with ruminal cannula are used to investigate in situ ruminal degradability. Five roughage sources, timothy hay, alfalfa pellet, rice straw, klein grass hay and tall fescue straw, are all selected from 12 roughage sources above for further experiments. Overall, the nutrient components and minerals from the 12 roughage sources have shown low values when comparing with standard tables of feed compositions in Korea. In situ dry matter disappearance rate is recorded as high in order of klein grass, timothy, alfalfa pellet, tall fescue and rice straw. In situ crude protein disappearance rate is high in order of alfalfa pellet, klein grass, timothy, tall fescue and rice straw.

Ruminal Dry Matter and Fiber Characteristics of Rice Hulls-bedded Broiler Litter Compared with Rice Straw

  • Kwak, W.S.;Park, J.M.;Park, K.K.;Kim, W.Y.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.17 no.2
    • /
    • pp.207-212
    • /
    • 2004
  • Ruminal digestion of dry matter (DM) and neutral detergent fiber (NDF) of processed (ensiled, deepstacked or composted) broiler litter (BL) was determined in situ and in vitro, and compared with rice straw (RS). DM disappearances at 24 and 48 h and digestion of differently processed BL were higher than those of RS. Compared with RS, processed BL was low in NDF disappearance at 72 h incubation, digestion rate ($K_dB$) and digestibility at 0.025 of passage rate; however, deepstacked BL was similar in these NDF characteristics. Processing of BL affected ruminal digestion of nutrients such as DM and NDF adversely. NDF of composted BL, especially, was the most indigestible. This in situ nutritional evaluation indicated that deepstacked BL, the most widely used form of BL, was superior in DM characteristics (fractions, ruminal disappearance and digestibility) and similar in NDF characteristics (ruminal disappearance and digestibility) to RS.

The Effect of Addition of Apple Pomace on Quality and In Situ Degradability of Orchardgrass Silage (사과박 첨가가 오차드그라스 사일리지의 품질과 In Situ 소실율에 미치는 영향)

  • 조익환;황보순;안종호;김현진;이주삼
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.21 no.3
    • /
    • pp.137-144
    • /
    • 2001
  • The quality including in situ degradability in the rumen of Holstein of the orchardgrass silage added with apple pomace was investigated in this study. The amount of apple pomace added in different treatments were 0, 20, 40 and 60% respectively. With higher amount of addition of apple pomace to orchardgrass, ADF, NDF and crude ash contents decreased significantly (p<0.05). Crude protein contents in the silages (11.8- 12.9%) were similar to that of 100% orchardgrass silage. Moisture contents increased according to the higher proportion of apple pomace in the silages. On the contrary to moisture content, pH was lower in 40-60% addition of apple pomace (3.7-3.9) than that of 100% orchardgrass silage (4.7). However the contents of lactic acid (1.7-2.5%), acetic acid (1.3- 1.7%) and total organic acid (2.9-4.2%) significantly increased according to higher levels of addition of apple pomace compared to the respective values of 100% orchardgrass silage (1.1%, 0.6% 1.7%). In siru disappearance rates of dry matter and NDF in the rumen were significantly higher at the stages of incubation after 24h in 40-60% addition of apple pomace than in 100% orchardgrass silage. No statistical differences were observed with quickly degradable fraction (a) and slowly degradable fraction (b) in the disappearance rates of dry matter and NDF. However, fractional rate of disappearance (c) and effective degradability (ED, k=0.08) for dry matter and NDF were significantly higher in 20-60% addition of apple pomace as 0.0076-0.0079 and 0.0099-0.0130. and 39.3-41.7% and 18.4- 20.6% respectively than the respective values of 0.0054 and 0.0064, and 36.8 and 16.5% of 100% orchardgrass silage. (Key words : Orchardgrass silage. Apple pomace. Lactic acid, In Situ Degradability. Effective degradability)

  • PDF

Nitrogen Fixation and In Situ Dry Matter and Fibre Constituents Disappearance of Wheat Straw Treated with Urea and Boric Acid in Murrah Buffaloes

  • Dass, R.S.;Mehra, U.R.;Verma, A.K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.13 no.8
    • /
    • pp.1133-1136
    • /
    • 2000
  • Wheat straw was treated with 4 per cent urea at a moisture level of 50 per cent alongwith different levels of boric acid viz. 1, 2, 3 and 4 per cent, under laboratory conditions to know the impact of boric acid on ammonia-N fixation in the straw. Murrah buffaloes were used for determining the disappearance of dry matter, CP and fibre constituents by nylon bag technique. Ammoniation increased CP content of wheat straw, which increased further due to addition of boric acid. Low level of boric acid (1%) had no adverse effect on fibre constituents disappearance but at higher levels there was a depressioon in the disappearance of fibre coonstituents. It can be concluded that low level of boric acid was sufficient to trap the excess ammonia released during urea ammoniation of wheat straw without affecting other constituents and their disappearance in the rumen of buffaloes.

Effects of Micronization on the In situ and In vitro Digestion of Cereal Grains

  • McAllister, T.A.;Sultana, H.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.24 no.7
    • /
    • pp.929-939
    • /
    • 2011
  • The effects of micronization on in situ and in vitro nutrient disappearances of wheat, barley and corn were investigated in a series of experiments. In Experiment 1, chemical composition and in situ dry matter disappearance (DMD) of six varieties of wheat were determined. In addition, an in vitro study was completed using ground micronized and unmicronized wheat (var. Kansas). In Experiment 2, three varieties of wheat (Kansas, Sceptre and Laura) and in Experiment 3, three cereal grains (wheat, barley and corn) were either micronized for 1 min to attain internal kernel temperatures of 90-100$^{\circ}C$ or not (controls), and DM, protein and starch disappearances were estimated. In Experiment 2, an in vitro study was also completed using ground micronized and unmicronized wheat (var. Kansas). Wheat samples varied with respect to crude protein (10.0-21.2%), starch (61.6-73.9%), NDF (8.5-11.8%), volume weight (753-842 g/L) and kernel hardness (0.0-32.0). Rate (p = 0.003) and extent (p = 0.001) of in situ DMD differed among wheat varieties. Correlations between in situ kinetics, and chemical and physical properties of wheat varieties showed that protein content was negatively correlated with the rate of disappearance ($r^2$ = -0.77). Micronization of all grains markedly reduced (p = 0.001) the rate and extent of DM, and protein disappearances as compared to control samples. Micronization increased (p<0.05) the digestion of starch in wheat. However, release of ammonia into the incubation medium was markedly reduced (p<0.05), suggesting that micronization increased the resistance of protein to microbial digestion. Disappearances of DM, protein and starch differed (p = 0.001) among cereal grains with wheat>barley>corn. Micronization reduced the rate of DM disappearance (p = 0.011) and slowly degradable protein fractions (p = 0.03), however, increased (p = 0.004) slowly degradable starch fractions of all three cereals. Examination of in situ samples by scanning electron microscopy confirmed that microbial colonization focused on starch granules in micronized grains, and that the protein matrix exhibited resistance to microbial colonization. These results suggest that micronization may be used to increase the ruminal escape value of protein in cereal grains, but may lead to increased starch digestion if grains are finely ground.

Effects of feeding starch sugar by-products on in situ rumen disappearance rate, growth performance, and carcass characteristics of late finishing Hanwoo steers

  • Choi, Yongjun;Park, Geetae;Kang, Hyokon;Ahn, Jiyeon;Lee, Eunchae;Na, Youngjun;Lee, Sangrak
    • Animal Bioscience
    • /
    • v.35 no.2
    • /
    • pp.217-223
    • /
    • 2022
  • Objective: The aim of this study was to determine the effects of feeding starch sugar byproducts (SSBs) on in situ disappearance rate, performance, and carcass characteristics of Hanwoo steers in the late finishing stage. Methods: To determine the in situ disappearance rate, nylon bags filled with 5 g of SSB were inserted into the ventral sac of two cannulated Holsteins cows and incubated for 0, 2, 4, 8, 16, 24, and 48 h. A total of 30 Hanwoo steers were fed the experimental diets, which were basal diet (control) and 7% SSB on an as-fed basis (4.35% dry matter [DM]), formulated according to requirements of the Korean Feeding Standard for Hanwoo. The experiment was conducted over 80 days using a completely randomized block design. Results: Soluble fraction a of DM and organic matter (OM) was 44.20% and 64.60% DM, fraction b was 23.00% and 19.40% DM, and c values (the rate of degradation of fraction b) were 0.04 and 0.04/h, respectively. The effective degradability of DM at rumen solid outflow rates of 0.02, 0.05, and 0.08/h was 59.83, 54.75, and 52.16, respectively, and for OM was 77.78, 73.52, and 71.34, respectively. Initial and final body weight, average daily gain, DM intake, and gain:feed did not differ significantly between control and SSB groups during the entire experimental period. Carcass traits of Hanwoo steers with SSB supplementation were not significantly different between treatments except for dressing percentage, which was greater with SSB treatment. The content of saturated fatty acid (SFA) was greater and that of unsaturated fatty acids (UFA) was lower in the SSB group than in the control group. The ratio of UFA to SFA was significantly lower in the SSB group than in the control group. Conclusion: A total mixed ration containing less than 4.0% DM of SSBs can be used in Hanwoo steers without a decrease in productivity and carcass traits.

The Effect of Addition of Apple Pomace on Quality and in situ Degradability of Rice Straw Silage (사과박 첨가가 볏짚 사일리지의 품질과 in situ 소실율에 미치는 영향)

  • 조익환;황보순;이영옥;안종호;김현진;이주삼
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.20 no.4
    • /
    • pp.295-302
    • /
    • 2000
  • The quality of the rice straw silage added with apple pomace was investigated in this study and the amount of apple pomace added in different treatments were 0, 20, 40 and 60%, respectively. Crude protein contents (6.4-7.5%) of rice straw silage added with apple pomace were significantly (P<0.05) higher than that of 100%. rice straw silage (5.3%), however, crude ash contents were lower (P<0.05) in supplementation of apple pomace. The trends of changing chemical composition between raw materials and end products of silages particularly in the contents of crude protein and crude ash were more apparent in the silages added with apple pomace by 40-60%. Values of pH and the contents of lactic acid and total acid in 40-60% apple pomace added silages were 3.9-4.1, 1.0- 1.5% and 2.7-4.5%, respectively which were significantly (P<0.05) higher than those of 4.6, 0.02% and 0.34% in 100% rice straw silage, respectively. In situ dry matter (DM) and neutral detergent fiber (NDF) disappearance rates in the rumen in the treatments of 40- 60% apple pomace added silages were significantly (P<0.05) higher than those of 100% rice straw silage particularly since after 3 and 24 hour incubation on DM and NDF disappearance, respectively. Although quickly degraded fraction (a) among the treatments were not significantly different, 28.4-28.5% of slowly degraded fraction (b) and 27.2-27.4% of effective degradability (ED, k=0.08) for DM were significantly (P<0.05) higher than those of 100% rice straw silage (12.5 and 24.6% respectively). NDF was in the same trend as in DM. 31.6-63.2% of NDF for b fraction and 18.7- 19.4% for ED in 40-60% apple pomace added silages were significantly (P<0.05) higher than those of 100% rice straw silage (12.4 and 17.6% respectively). (Key words : Rice straw silage, Apple pomace, Lactic acid, In situ digestibility, Effective degradability)

  • PDF