• 제목/요약/키워드: In silico Screening

검색결과 58건 처리시간 0.032초

Receptor-oriented Pharmacophore-based in silico Screening of Human Catechol O-Methyltransferase for the Design of Antiparkinsonian Drug

  • Lee, Jee-Young;Baek, Sun-Hee;Kim, Yang-Mee
    • Bulletin of the Korean Chemical Society
    • /
    • 제28권3호
    • /
    • pp.379-385
    • /
    • 2007
  • Receptor-oriented pharmacophore-based in silico screening is a powerful tool for rapidly screening large number of compounds for interactions with a given protein. Inhibition of the enzyme catechol-Omethyltransferase (COMT) offers a novel possibility for treating Parkinson's disease. Bisubstrate inhibitors of COMT containing the adenine of S-adenosylmethionine (SAM) and a catechol moiety are a new class of potent and selective inhibitor. In the present study, we used receptor-oriented pharmacophore-based in silico screening to examine the interactions between the active site of human COMT and bisubstrate inhibitors. We generated 20 pharmacophore maps, of which 4 maps reproduced the docking model of hCOMT and a bisubstrate inhibitor. Only one of these four, pharmacophore map I, effectively described the common features of a series of bisubstrate inhibitors. Pharmacophore map I consisted of one hydrogen bond acceptor (to Mg2+), three hydrogen bond donors (to Glu199, Glu90, and Gln120), and one hydrophobic feature (an active site region surrounded by several aromatic and hydrophobic residues). This map represented the most essential pharmacophore for explaining interactions between hCOMT and a bisubstrate inhibitor. These results revealed a pharmacophore that should help in the development of new drugs for treating Parkinson's disease.

In silico High-Throughput Screening by Hierarchical Chemical DB Search by 3D Pharmacophore Model

  • Shin, Jae-Min
    • 대한약학회:학술대회논문집
    • /
    • 대한약학회 2002년도 Proceedings of the Convention of the Pharmaceutical Society of Korea Vol.2
    • /
    • pp.181-182
    • /
    • 2002
  • Recentadvancesin '-omics ' technologies enable us to discover more diverse disease- relevant target proteins, which encourages us to find out more target-specific novel lead compounds as new drug candidates. Therefore, high-throughput screening (HTS) becomes an essential tool in this area. Among many HTS tools, in silico HTS is a very fast and cost-effective tool to try to derive a new lead compound for any new targets, especially when the target protein structures are known or readily modeled. (omitted)

  • PDF

Virtual Screening Approaches in Identification of Bioactive Compounds Akin to Delphinidin as Potential HER2 Inhibitors for the Treatment of Breast Cancer

  • Patidar, Kavisha;Deshmukh, Aruna;Bandaru, Srinivas;Lakkaraju, Chandana;Girdhar, Amandeep;Gutlapalli, VR;Banerjee, Tushar;Nayarisseri, Anuraj;Singh, Sanjeev Kumar
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제17권4호
    • /
    • pp.2291-2295
    • /
    • 2016
  • Small molecule tyrosine kinase inhibitors targeting HER 2 receptors have emerged as an important therapeutic approach in inhibition of downstream proliferation and survival signals for the treatment of breast cancers. Recent drug discovery efforts have demonstrated that naturally occurring polyphenolic compounds like delphinidin have potential to inhibit proliferation and promote apoptosis of breast cancer cells by targeting HER2 receptors. While delphinidin may thus reduce tumour size, it is associated with serious side effects like dysphonia. Owing to the narrow therapeutic window of delphinidin, the present study aimed to identify high affinity compounds targeting HER2 with safer pharmacological profiles than delphinidin through virtual screening approaches. Delphinidin served as the query parent for identification of structurally similar compounds by Tanimoto-based similarity searching with a threshold of 95% against the PubChem database. The compounds retrieved were further subjected to Lipinski and Verber's filters to obtain drug like agents, then further filtered by diversity based screens with a cut off of 0.6. The compound with Pubchem ID: 91596862 was identified to have higher affinity than its parent. In addition it also proved to be non-toxic with a better ADMET profile and higher kinase activity. The compound identified in the study can be put to further in vitro drug testing to complement the present study.

In Silico Screening of a Novel Inhibitor of β-Ketoacyl Acyl Carrier Protein Synthase I

  • Lee, Jee-Young;Jeong, Ki-Woong;Lee, Ju-Un;Kang, Dong-Il;Kim, Yang-Mee
    • Bulletin of the Korean Chemical Society
    • /
    • 제32권5호
    • /
    • pp.1645-1649
    • /
    • 2011
  • [ ${\beta}$ ]Ketoacyl acyl carrier protein synthase I (KAS I) is involved in the elongation of unsaturated fatty acids in bacterial fatty acid synthesis and a therapeutic target of designing novel antibiotics. In this study, we performed receptor-oriented pharmacophore-based in silico screening of E. coli KAS I (ecKAS I) with the aim of identifying novel inhibitors. We determined one pharmacophore map and selected 8 compounds as candidates ecKAS I inhibitors. We discovered one antimicrobial compound, YKAe1008, N-(3-pyridinyl) hexanamide, displaying minimal inhibitory concentration (MIC) values in the range of 128-256 ${\mu}g/mL$ against MRSA and VREF. YKAe1008 was subsequently assessed for binding to ecKAS I using saturation-transfer difference NMR spectroscopy. Further optimization of this compound will be carried out to improve its antimicrobial activity and membrane permeability against bacterial cell membrane.

가상 검색 및 시험관 시험을 이용한 총명탕 중 주성분들에 대한 약물작용 및 대사 예측 (In silico Prediction and In vitro Screening of Biological Activities and Pharmacokinetics for the Major Compounds in Chong Myung Tang)

  • 권영이
    • 약학회지
    • /
    • 제51권6호
    • /
    • pp.463-468
    • /
    • 2007
  • Chong Myung Tang is consisted of three medicinal herbs (Acori Graminei Rhizoma, Polygalae Radix and Hoelen cum Radix). It has been used as a medicine for the purpose of learning and memory improvement. In this paper, Chong Myung Tang was screened the biological activities for Alzheimer's disease. The extract (70% ethanol) of Acari Graminei Rhizoma (1 mg/ml) showed that acetylcholinesterase (AChE) and amyloid beta ($A{\beta}$) peptide aggregation inhibitory potency are 43.1% and 76.5%, respectively. The extract of Polygalae Radix showed inhibitory activity against $A{\beta}_{1-42}$ peptide aggregation (51.5%). To predict the drug-likeness, oral absorption ability; blood-brain barrier (BBB) penetraion rate, mutagenecity and carcinogenicity; in silico screening was performed against 16 compounds in the three medicinal herbs. According to the results, all compounds have appropriate chemical structures as medicines. The six compounds in Acori Graminei Rhizoma and the five compounds in Hoelen cum Radix showed excellent oral absorption rate and BBB penetration rate. The four compounds in Polygalae Radix showed excellent oral absorption rate, but their BBB penetration was presented low rate. And, the extract of Hoelen cum Radix didn't show AChE and $A{\beta}_{1-42}$ peptide aggregation inhibitory activities in vitro. Therefore, their activity in brain may be other mechanism. According to all of the results, in silico prediction technology is convenient and effective to determine biological active compounds in medicinal herbs.

돼지 페로몬 성 냄새 분자들의 약물동력학적 특성과 ADMET 분석 (Pharmacokinetics Characters and ADMET Analyses of Potently Pig Pheromonal Odorants)

  • 최경섭;박창식;성낙도
    • Reproductive and Developmental Biology
    • /
    • 제34권3호
    • /
    • pp.153-159
    • /
    • 2010
  • The 34 potently pig pheromonal odorants (1-32, 5755 & 7113) through structure-based virtual screening and ligand-based virtual screening method were selected and their ADMET and pharmacokinetics characters were evaluated and discussed quantitatively. The pheromonal odorants were projected on the following pre-calculated models, Caco-2 cell permeability, blood-brain barrier permeation, hERG inhibition and volume-distribution. From the results of in silico study, it is found that an optimal compound (31) either penetrating or have a little ($P_{caco2}$=-8.143) for Caco-2 cell permeability, moderate penetrating ability ($P_{BBB}$=0.082) for blood-brain barrier permeation, the low QT prolongation ($P_{hERG}$=1.137) for the hERG $K^+$ channel inhibition, and low distribution into tissues ($P_{VD}$=-5.468) for volume-distribution. Therefore, it is predicted that the compound (31) a topical application may be preferable from these based foundings.

Identification and Pharmacological Analysis of High Efficacy Small Molecule Inhibitors of EGF-EGFR Interactions in Clinical Treatment of Non-Small Cell Lung Carcinoma: a Computational Approach

  • Gudala, Suresh;Khan, Uzma;Kanungo, Niteesh;Bandaru, Srinivas;Hussain, Tajamul;Parihar, MS;Nayarisseri, Anuraj;Mundluru, Hema Prasad
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제16권18호
    • /
    • pp.8191-8196
    • /
    • 2016
  • Inhibition of EGFR-EGF interactions forms an important therapeutic rationale in treatment of non-small cell lung carcinoma. Established inhibitors have been successful in reducing proliferative processes observed in NSCLC, however patients suffer serious side effects. Considering the narrow therapeutic window of present EGFR inhibitors, the present study centred on identifying high efficacy EGFR inhibitors through structure based virtual screening strategies. Established inhibitors - Afatinib, Dacomitinib, Erlotinib, Lapatinib, Rociletinib formed parent compounds to retrieve similar compounds by linear fingerprint based tanimoto search with a threshold of 90%. The compounds (parents and respective similars) were docked at the EGF binding cleft of EGFR. Patch dock supervised protein-protein interactions were established between EGF and ligand (query and similar) bound and free states of EGFR. Compounds ADS103317, AKOS024836912, AGN-PC-0MXVWT, GNF-Pf-3539, SCHEMBL15205939 were retrieved respectively similar to Afatinib, Dacomitinib, Erlotinib, Lapatinib, Rociletinib. Compound-AGN-PC-0MXVWT akin to Erlotinib showed highest affinity against EGFR amongst all the compounds (parent and similar) assessed in the study. Further, AGN-PC-0MXVWT brought about significant blocking of EGFR-EGF interactions in addition showed appreciable ADMET properties and pharmacophoric features. In the study, we report AGN-PC-0MXVWT to be an efficient and high efficacy inhibitor of EGFR-EGF interactions identified through computational approaches.

Docking Study of Flavonols and Human c-Jun N-terminal Kinase 1

  • Lee, Jee-Young;Jeong, Ki-Woong;Heo, Yong-Seok;Kim, Yang-Mee
    • Bulletin of the Korean Chemical Society
    • /
    • 제31권8호
    • /
    • pp.2147-2150
    • /
    • 2010
  • c-Jun N-terminal kinase 1 (JNK1) is involved in apoptosis, cell differentiation and proliferation. It has been reported that a flavonol, quercetin, induces cell apoptosis and JNK inhibition. In order to understand the interactions of quercetin and JNK1, we performed receptor-oriented pharmacophore based in silico screening and determined a binding model of human JNK1 and quercetin at the ATP binding site of JNK1. 5-OH of A-ring and carbonyl oxygen of C-ring of quercetin participated in hydrogen bonding interactions with backbone of E109 and M111. Additionally, 3'-OH of quercetin formed a hydrogen bond with backbone of I32. One hydrophobic interaction is related on the binding of quercetin to JNK1 with I32, N114, and V158. Based on this model, we conducted a docking study with other 8 flavonols to find possible flavonoids inhibitors of JNK1. We proposed that one flavonols, rhamnetin, can be a potent inhibitor of JNK and 5-OH of A-ring and 3'-OH of B-ring of flavonols are the essential features for JNK1 inhibition.

Mutagenic Analysis of hPNMT Confirms the Importance of Lys57 and the Inhibitor Binding Site

  • Jeong, Ki-Woong;Kang, Dong-Il;Lee, Jee-Young;Kim, Yang-Mee
    • Bulletin of the Korean Chemical Society
    • /
    • 제32권2호
    • /
    • pp.455-458
    • /
    • 2011
  • In previous report, with the aid of receptor-oriented pharmacophore-based in silico screening, we characterized three novel hPNMT inhibitors (YPN010, YPN016, and YPN017) and proposed that the hydrogen bonding interaction between inhibitors and side chain of Lys57 is very important to inhibitory activity of hPNMT. To confirm the importance of Lys57, mutant with substitution of Lys57 with Ala was cloned and binding study was performed for a K57A mutant of hPNMT using STD-NMR and fluorescence experiments. The binding constants for three novel inhibitors with mutant hPNMT were dramatically decreased compared to those with wild-type protein. K57A mutant-induced conversion of noradrenaline to adrenaline was suppressed about 95 % compared to wild-type hPNMT. Mutagenic analysis using a K57A mutant confirmed the importance of the Lys57 residue in binding of the inhibitor candidate to hPNMT as well as enzymatic activity of hPNMT, implying that these results are consistent with our binding model.

Docking Study of Biflavonoids, Allosteric Inhibitors of Protein Tyrosine Phosphatase 1B

  • Lee, Jee-Young;Jung, Ki-Woong;Woo, Eun-Rhan;Kim, Yang-Mee
    • Bulletin of the Korean Chemical Society
    • /
    • 제29권8호
    • /
    • pp.1479-1484
    • /
    • 2008
  • Protein tyrosine phosphatase (PTP) 1B is the superfamily of PTPs and a negative regulator of multiple receptor tyrosine kinases (RTKs). Inhibition of protein tyrosine phosphatase 1B (PTP1B) has been proposed as a strategy for the treatment of type 2 diabetes and obesity. Recently, it has been reported that amentoflavone, a biflavonoid extracted from Selaginella tamariscina, inhibited PTP1B. In the present study, docking model between amentoflavone and PTP1B was determined using automated docking study. Based on this docking model and the interactions between the known inhibitors and PTP1B, we determined multiple pharmacophore maps which consisted of five features, two hydrogen bonding acceptors, two hydrogen bonding donors, and one lipophilic. Using receptor-oriented pharmacophore-based in silico screening, we searched the biflavonoid database including 40 naturally occurring biflavonoids. From these results, it can be proposed that two biflavonoids, sumaflavone and tetrahydroamentoflavone can be potent allosteric inhibitors, and the linkage at 5',8''-position of two flavones and a hydroxyl group at 4'-position are the critical factors for their allosteric inhibition. This study will be helpful to understand the mechanism of allosteric inhibition of PTP1B by biflavonoids and give insights to develop potent inhibitors of PTP1B.