• Title/Summary/Keyword: In Vitro maturation

Search Result 749, Processing Time 0.033 seconds

Control of MPF Activity and Nuclear Remodeling of Somatic Cell Nuclear Transfer Bovine Embryos by Chemical Treatments (소 체세포 핵이식란의 화학적 처리에 의한 MPF 활성 및 핵의 Remodeling 조절)

  • Choi, Yong-Lak;Lee, Yu-Mi;Kim, Ho-Jeong;Park, Joo-Hee;Kwon, Dae-Jin;Park, Choon-Keun;Yang, Boo-Keun;Cheong, Hee-Tae
    • Journal of Embryo Transfer
    • /
    • v.23 no.1
    • /
    • pp.31-36
    • /
    • 2008
  • We attempted to control the maturation promoting factors (MPF) activity and nuclear remodeling of somatic cell nuclear transfer (NT) bovine embryos. Bovine ear skin fibroblasts were fused to enucleated oocytes treated with either 5 mM caffeine for 2.5 h or 0.5 mM vanadate for 0.5 h and activated. The nuclear remodeling type of the reconstituted embryos was evaluated 1.5 h after activation. MPF activity was assessed in enucleated and chemical treated oocytes before the injection of a donor cell. Effect of chemicals on the embryonic development was evaluated with parthenogenetic embryos. MPF activity increased significantly by caffeine treatment, but decreased by vanadate treatment (p<0.05). Caffeine or vanadate had no deleterious effect on the parthenogenetic embryo development. In caffeine treated group, premature chromosome condensation (PCC) was occurred in 72.2% of NT embryos (p<0.05). In contrast, vanadate induced the formation of a pronucleus-like structure (PN) in a high frequency (68.9%, p<0.05) without PCC (NPCC). Blastocyst development of NT embryos increased by treating with caffeine (30.3%), whereas decreased by treating with vanadate (11.4%) compared to control (22.1%, p<0.05). The results indicate that caffeine or vanadate can control of MPF activity and remodeling type of NT embryos, resulting in the increased or decreased in vitro development.

Assessment of follicular maturation by plasma estradiol levels and ultrasound in the normal and clomiphene-stimulated menstrual cycles (정상월경주기및 클로미펜을 이용한 배란유도 월경주기에서의 난포성장에 관한 연구)

  • Chang, Y.S.;Lee, J.Y.;Moon, S.Y.;Kim, J.K.;Lim, Y.T.;Han, K.S.
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.13 no.1
    • /
    • pp.67-75
    • /
    • 1986
  • Follicle monitoring in the normal and clomiphene·stimulated cycles were analyzed in the Seoul IVF and ET (In vitro fertilization and embryo transfer) program. Ovarian follicular diameters were measured by the real·time sector scanner and plasma estradiol levels were assayed by radioimmunoassay methods during periovulatory period. The maximum follicular sizes of the clomiphene-stimulated and normal cycles were 21.1+-3.4mm and 19.2+-0.8mm, respectively. The peak levels of plasma estradiol in the clomiphene-stimulated and normal cycles were 10538+-553.6ng/ml and 298.3+-39.6pg/ml, respectively. Daily growth rate of the follicular diameters of the clomiphene-stimulated and normal cycles were 2.1mm and 1.9mm, respectively. Mean follicular number of the clomiphene-simulated and normal cycles were 2.28+-1.12 and 1.12+-0.21, respectively. There was a good statistical correlation between the mean follicular diameters and the plasma estradiol levels in the normal ovulatory and c1omiphene-stimulated ovulatory menstrual cycles (p<0.05). Our data revealad that the mean follicular diameter and the plasma estradiol level prior to HCG administration in IVF and program should reach at the level of 17.8+-3.0mm and 949.4+-487.1 pg/ml, respectively.

  • PDF

From Bench to Market: Preparing Human Pluripotent Stem Cells Derived Cardiomyocytes for Various Applications

  • Moon, Sung-Hwan;Bae, Daekyeong;Jung, Taek-Hee;Chung, Eun-Bin;Jeong, Young-Hoon;Park, Soon-Jung;Chung, Hyung-Min
    • International Journal of Stem Cells
    • /
    • v.10 no.1
    • /
    • pp.1-11
    • /
    • 2017
  • Human cardiomyocytes (CMs) cease to proliferate and remain terminally differentiated thereafter, when humans reach the mid-20s. Thus, any damages sustained by myocardium tissue are irreversible, and they require medical interventions to regain functionality. To date, new surgical procedures and drugs have been developed, albeit with limited success, to treat various heart diseases including myocardial infarction. Hence, there is a pressing need to develop more effective treatment methods to address the increasing mortality rate of the heart diseases. Functional CMs are not only an important in vitro cellular tool to model various types of heart diseases for drug development, but they are also a promising therapeutic agent for cell therapy. However, the limited proliferative capacity entails difficulties in acquiring functional CMs in the scale that is required for pathological studies and cell therapy development. Stem cells, human pluripotent stem cells (hPSCs) in particular, have been considered as an unlimited cellular source for providing functional CMs for various applications. Notable progress has already been made: the first clinical trials of hPSCs derived CMs (hPSC-CMs) for treating myocardial infarction was approved in 2015, and their potential use in disease modeling and drug discovery is being fully explored. This concise review gives an account of current development of differentiation, purification and maturation techniques for hPSC-CMs, and their application in cell therapy development and pharmaceutical industries will be discussed with the latest experimental evidence.

Entinostat, a histone deacetylase inhibitor, increases the population of IL-10+ regulatory B cells to suppress contact hypersensitivity

  • Min, Keun Young;Lee, Min Bum;Hong, Seong Hwi;Lee, Dajeong;Jo, Min Geun;Lee, Ji Eon;Choi, Min Yeong;You, Jueng Soo;Kim, Young Mi;Park, Yeong Min;Kim, Hyuk Soon;Choi, Wahn Soo
    • BMB Reports
    • /
    • v.54 no.10
    • /
    • pp.534-539
    • /
    • 2021
  • IL-10+ regulatory B (Breg) cells play a vital role in regulating the immune responses in experimental autoimmune encephalomyelitis, colitis, and contact hypersensitivity (CHS). Several stimulants such as lipopolysaccharide (LPS), CD40 ligand, and IL-21 spur the activation and maturation of IL-10+ Breg cells, while the epigenetic mechanism for the IL-10 expression remains largely unknown. It is well accepted that the histone acetylation/deacetylation is an important mechanism that regulates the expression of IL-10. We found that entinostat, an HDAC inhibitor, stimulated the induction of IL-10+ Breg cells by LPS in vitro and the formation of IL-10+ Breg cells to suppress CHS in vivo. We further demonstrated that entinostat inhibited HDAC1 from binding to the proximal region of the IL-10 expression promoter in splenic B cells, followed by an increase in the binding of NF-κB p65, eventually enhancing the expression of IL-10 in Breg cells.

Effects of Nonylphenol and 2,2', 4,6,6'-pentachlorobiphenyl on in vitro Sex Steroid Production in Maturing Oocytes of the Yellowfin Goby, Acanthogobius flavimanus

  • Baek, Hea-Ja;Hwang, In-Joon;Park, Myoung-Hee;Kim, Hyung-Bae
    • Fisheries and Aquatic Sciences
    • /
    • v.12 no.4
    • /
    • pp.293-298
    • /
    • 2009
  • Several studies have reported that nonylphenol (NP) and 2,2', 4,6,6'-pentachlorobiphenyl (PCB104) exhibit estrogenic activity. To investigate the estrogenic potency of NP and PCB104 during oocyte maturation, fully vitellogenic oocytes (0.76 mm diameter in average) of yellow fin goby, Acanthogobius flavimanus, were exposed in vitro to these chemicals at different concentrations (0.1, 1, 10, 100, and 1,000 ng/mL) with the exogenous precursor $17\alpha$-hydroxyprogesterone ($17{\alpha}OHP$) 50 ng/mL in the presence or absence of human chorionic gonadotropin (HCG). The production of testosterone (T), estradiol-$17\beta$ (E2), and $17\alpha,20\beta$-dihydroxy-4-pregnen-3-one ($17\alpha20{\beta}OHP$) in response to NP or PCB104 were measured by radioimmunoassay. Steroid levels were also expressed as E2/T and E2/$17\alpha20{\beta}OHP$ ratios. In the absence of HCG, no significant differences in either NP or PCB104 treatment groups were observed. In the presence of HCG, NP treatment did not show significant differences in the production of T, E2, and $17\alpha20{\beta}OHP$ at any concentrations tested, but E2/T ratios were decreased at concentrations of 0.1, 1, 10, and 1,000 ng/mL compared with the control group. PCB104 decreased E2 production at concentrations of 0.1, 10, and 1000 ng/mL, but did not show significant differences in the production of T and $17\alpha20{\beta}OHP$ at any concentration tested. While E2/T ratios were decreased at PCB104 concentrations of 0.1, 1, 10, and 1,000 ng/mL, E2/$17\alpha20{\beta}OHP$ ratios were also decreased at 0.1, 10, and 1,000 ng/mL compared with the control. Results indicate that both NP and PCB104 appeared to have antiestrogenic effects during this phase.

Sex Determination in Somatic and Embryonic Cells of the Pig by FISH and PCR (FISH와 PCR에 의한 돼지 체세포 및 배아세포의 성 판정)

  • Chung, Y.;Jeon, J.T.;Kim, K.D.;Lee, S.H.;Hong, K.C.
    • Korean Journal of Animal Reproduction
    • /
    • v.20 no.3
    • /
    • pp.323-331
    • /
    • 1996
  • Predetermination of sex in mammalian species has many aspects of application including the prenatal diagnoses of genetic disorders in humans and sex-selected breeding programs in the animal industry. Embryos sexing can be carried out using the polymerase chain reaction (PCR) to amplify specific sequences present in the sex chromosomes, or by fluorescent in situ hybridization (FISH) of specific probes to the X and Y chromosomes. A 3.3 kb porcine male-specific DNA fragment (pEM39) was cloned previously in our laboratory. In this study, FISH and PCR methods were employed to examine if the pEM39 can be used a sex-specific DNA probes Porcine ovaries were obtained from a local slaughter house and oocytes collected. All oocytes were subjected to in vitro maturation followed by 1n vitro fertilization. Parthenogenetically activated embryos were served as a negative control. Embryonic samples were collected at the 2-cell stages and PCR was performed to analyze DNA. Among 10 embryos examined, four embryos were identified as males and six were females. The cloned male-specific DNA fragment showed male-specificity for the cells in the liver tissue and the porcine early embryos by FISH. It was also demonstrated that the cloned male-specific DNA is localized on the hetero chromatic region of the long arm in the Y chrom-osome (Yq) as shown by the FISH and karyotyping. The results suggest that the cloned male-specific DNA fragment may be useful for predetermination of sex with a few embryonic cells. The porcine male-specific sequence can be a reliable index for embryo sexing by PCR.

  • PDF

High Frequency of Callus Induction, its Proliferation and Somatic Embryogenesis in Cotton (Gossypium hirsutum L.)

  • Haq, Ikram-ul;Zafar, Yusuf
    • Journal of Plant Biotechnology
    • /
    • v.6 no.1
    • /
    • pp.55-61
    • /
    • 2004
  • Callus induction and somatic embryogenesis are fundamental to cotton tissue culture biotechnology. An efficient protocol for callus induction, somatic embryogenesis and their maturation have been developed to regenerate plantlets from cotton (Gossypium hirsutum L.) variety coker 312. Embryogenic callus was initiated from hypo-cotyl region that was used as an explant at seedling stage when it was about 7-8 days old. Callus induction was achieved through culturing hypocotyls (5-7mm) on $MS_{1a} medium supplemented with 2,4-D (0.1 mg/L) and KT (0.5 mg/L) for six weeks. A friable, colorless, bulky and well proliferating callus becomes greenish with the addition of NAA (2.0 mg/L), ZT (0.1 mg/L) and removal of 2,4-D (M $S_{1b}$) cultured for two weeks then again transferred to $MS_{1a}. 2,4-dichlorophenoxyacetic acid (2,4-D) promoted the proliferation of embryogenic callus, but had a negative effect on the differentiation and germination of somatic embryos. ZT (0.1mg/L) and activated charcoal (2g/L), both hormones play an important role in differentiation and germination of somatic embryos in hypocotyls derived embryogenic callus but in case of cotton, such a capability have been observed on MS medium with 1.92 g/L $KNO_3$, but it is considered to attain somewhat more improvement. High embryogenesis frequency was achieved through nutrient deficient stress treatment. The frequency of globular embryogenesis (two-three folds) was achieved when well proliferating callus was (from $MS_{1a}$ media) cultured on MS (1/5 strength) medium for four weeks. Here the development of anthocyanins is the best indicator for somatic embryogenesis. However, when embryoid callus was cultured on MS (full strength) medium, the globular embryos were developed into normal plantlets immediately. In this procedure 27.49% cotyledenary embryos were developed. Of that 70% cotyledenary embryos were developed not only into normal plantlets but rooted simultaneously, when cultured on MS (with 0.05 mgg/L giberrelic acid) medium. So complete plants could be regenerated through somatic embryogenesis from hypocotyl explants within 6 months.s.

Evaluation of Immunological Safety of Topiramate, an Anti-epileptic Drug, in a Murine Model

  • Han, Sang-Bae;Kim, Jee-Youn;Kwon, Soon-Woo;Kang, Jong-Soon;Kim, Hwan-Mook;Song, Suk-Gil;Hong, Jin-Tae;Kim, Young-Soo;Kim, Won-Seop
    • Biomolecules & Therapeutics
    • /
    • v.17 no.2
    • /
    • pp.168-174
    • /
    • 2009
  • Epilepsy is one of the most common neurological disorders, and topiramate (TPM) is one of the most effective drugs that can render patients seizure-free. The focus of the present study was to evaluate the immunological safety of TPM in a mouse model. We examined the in vitro effect of TPM on immune functions of BV2 microglial cells, RAW 264.7 macrophages, B cells, T cells, and dendritic cells. We also examined the in vivo effect of TPM on mouse immune organs, such as lymph node, spleen, and thymus. When cells were directly treated with TPM at concentrations from 1 to $30{\mu}g/ml$, TPM did not affect nitrite production by BV2 cells and macrophages, proliferation of B cells and T cells, or maturation of dendritic cells. In addition, TPM did not change the weight and cellularity of lymph nodes, spleen, and thymus in vivo at doses from 3 to 100 mg/kg injected i.p. into mice once a day for 4 consecutive days. These data showed that TPM, which is widely used as an anti-epileptic drug, is immunologically safe.

Tumour-Derived Reg3A Educates Dendritic Cells to Promote Pancreatic Cancer Progression

  • Guo, Jie;Liao, Mengfan;Hu, Xianmin;Wang, Jun
    • Molecules and Cells
    • /
    • v.44 no.9
    • /
    • pp.647-657
    • /
    • 2021
  • As a pancreatic inflammatory marker, regenerating islet-derived protein 3A (Reg3A) plays a key role in inflammation-associated pancreatic carcinogenesis by promoting cell proliferation, inhibiting apoptosis, and regulating cancer cell migration and invasion. This study aimed to reveal a novel immuno-regulatory mechanism by which Reg3A modulates tumour-promoting responses during pancreatic cancer (PC) progression. In an in vitro Transwell system that allowed the direct co-culture of human peripheral blood-derived dendritic cells (DCs) and Reg3A-overexpressing/ silenced human PC cells, PC cell-derived Reg3A was found to downregulate CD80, CD83 and CD86 expression on educated DCs, increase DC endocytic function, inhibit DC-induced T lymphocyte proliferation, reduce IL-12p70 production, and enhance IL-23 production by DCs. The positive effect of tumour-derived Reg3A-educated human DCs on PC progression was demonstrated in vivo by intraperitoneally transferring them into PC-implanted severe combined immunodeficiency (SCID) mice reconstituted with human T cells. A Reg3A-JAK2/STAT3 positive feedback loop was identified in DCs educated with Reg3A. In conclusion, as a tumour-derived factor, Reg3A acted to block the differentiation and maturation of the most important antigen-presenting cells, DCs, causing them to limit their potential anti-tumour responses, thus facilitating PC escape and progression.

Antioxidant Favors the Developmental Competence of Porcine Parthenogenotes by Reducing Reactive Oxygen Species

  • Hossein, Mohammad Shamim;Kim, Yeun Wook;Park, Seon Mi;Koo, Ok Jae;Hashem, Md Abul;Bhandari, Dilip P;Jeong, Yeon Woo;Kim, Sue;Kim, Ji Hye;Lee, Eu Gine;Park, Sun Woo;Kang, Sung Keun;Lee, Byeong Chun;Hwang, Woo Suk
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.20 no.3
    • /
    • pp.334-339
    • /
    • 2007
  • Reactive oxygen species (ROS) generate during electrical activation of oocytes which has detrimental effects on embryo survival when overwhelmed. The present study was designed to investigate the ability of L-ascorbic acid, a novel water soluble antioxidant, to reduce the ROS level in developing embryos and their subsequent effects on embryo development in vitro. The compact cumulus oocyte complexes (COCs) were cultured in tissue culture medium (TCM)-199 supplemented with 10 ng/ml epidermal growth factor, 4 IU/ml pregnant mare serum gonadotropin (PMSG), and human chorionic gonadotropin (hCG) and 10% (v/v) porcine follicular fluid (pFF) for 44 h. After maturation culture, the denuded oocytes were activated with a single DC pulse of 2.0 kV/cm in 0.3 M mannitol solution containing 0.5 mM of HEPES, 0.1 mM of $CaCl_2$ and 0.1 mM of $MgCl_2$ for $30{\mu}s$ using a BTX Electro-cell Manipulator. The activated oocytes were cultured in modified North Carolina State University-23 (mNSCU-23) medium for 168 h. The level of $H_2O_2$ in each embryo was measured by the dichlorohydrofluorescein diacetate (DCHFDA) method at 48 h after activation. The blastocyst formation rate was significantly higher when culture medium was supplemented with 50 and $100{\mu}M$ L-ascorbic acid (31.2 and 38.7%, respectively) compared to non-supplemented (16.1%) group. Accordingly, significantly more cells in blastocyst were found for 50 and $100{\mu}M$ L-ascorbic acid (50.0 and 56.4, respectively) compared to 0 and $200{\mu}M$ L-ascorbic acid (36.5 and 39.8, respectively). L-ascorbic acid reduces the $H_2O_2$ level in developing embryos in a dose-dependant manner. The $H_2O_2$ level (pixels/ embryos) was 191.5, 141.0, 124.0 and 163.3 for 0, 50, 100 and $200{\mu}M$ L-ascorbic acid, respectively. So, we recommend to supplement 50 or $100{\mu}M$ L-ascorbic acid in porcine in vitro culture medium.