• Title/Summary/Keyword: In Sacco Degradation

Search Result 33, Processing Time 0.019 seconds

Influence of Dry Roasting of Whole Faba Beans (Vicia faba) on Rumen Degradation Characteristics in Dairy Cows, II: Starch

  • Yu, P.;Egan, A.R.;Holmes, J.H.G.;Leury, B.J.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.11 no.5
    • /
    • pp.503-509
    • /
    • 1998
  • Whole faba beans (WFB) were dry roasted at different temperatures of 110, 130 and $150^{\circ}C$ for 15, 30 and 45 minutes (min) to determine the optimal heating conditions to increase bypass starch as glucose source which may be a limiting nutrient in high producing dairy cattle. Ruminant degradation characteristics of starch (St) of WFB were determined using in sacco method in 6 dairy cows fed 60% hay and 40% concentrate. Measured characteristics of St were soluble (washable) fraction (S), potentially degradation fraction (D) and the rate of degradation (Kd) of the insoluble but degradable St fraction. Based on measurement of these characteristics, percentage bypass starch (%BSt) and bypass starch (BSt) were calculated. Degradability of starch in the rumen was reduced by dry roasting at temperature of 130 and $150^{\circ}C$ and increased at $110^{\circ}C$. S varied from 50.0% in the raw whole faba beans (RWFB) and 53.7% in $110^{\circ}C$/15 min to 18.2% in $150^{\circ}C$/45 min. D varied from 49.9% in RWFB and 46.3% in $110^{\circ}C$/15 min to 81.8 % in $150^{\circ}C$/45 min. Kd varied from 9.8% in RWFB and 11.0% in the $110^{\circ}C$/30 min to 4.2 in $150^{\circ}C$/45 min. All these effects resulted in increasing %BSt from 22.1% in the $110^{\circ}C$/45 min and 23.9% in RWFB to 49.9% in the $150^{\circ}C$/45 min. Therefore BSt increased from 91.4 g/kg and 98.4 g/kg to 199.9 g/kg respectively. Dry roasting at $110^{\circ}C$ increased the starch rumen degradation. Treatment at higher temperature (130 and $150^{\circ}C$) decreased rumen degradation of starch and seemed to be linear up to highest values tested. No optimal dry roasting conditions of treatment could be determined at this stage. It may be concluded that dry roasting at temperatures of 130 and $150^{\circ}C$ was effective in shifting starch degradation from rumen to intestine to increase bypass starch.

Effect of Urea-Molasses Cake Supplementation of Swamp Buffaloes Fed Rice Straw or Grasses on Rumen Environment, Feed Degradation and Intake

  • Van Thu, Nguyen;Uden, Peter
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.14 no.5
    • /
    • pp.631-639
    • /
    • 2001
  • Two experiments were carried out concerning the effects of urea-molasses cake (UMC) and its separate components as supplements on rumen environment, in sacco feed degradability and intake of swamp buffaloes fed rice straw, grasses or a mixture of grasses and rice straw. Experiment 1 was a change-over design with 4 animals and 6 treatments. The buffaloes were fed rice straw ad libitum, and the experimental treatments were: no supplementation (R); 700 g of the complete urea-molasses cake (RUMC); 53.2 g urea (RU); 276 g rice bran and 52.5 coconut meal (RRC); 26.6 g salt, 26.6 g bone meal and 2.1 g trace minerals (RMi); and 25 g molasses (RMo). Experiment 2 was a Latin square design with four diets and four animals. The treatments were: rice straw ad libitum and mixed grass (RG) at 2.5 g dry matter per kg live weight (LW); RG plus 700 g urea-molasses cake (RGUMC); mixed grass ad libitum (G); and G plus 700 g cake (GUMC). In both experiments the supplements were fed once daily. In Exp. 1 although the rumen pH was significantly different (p<0.05) among diets, it varied only from 6.90 to 7.06. The ruminal ammonia was also significantly (p<0.05) different among the diets with RUMC significantly higher than R. Total bacterial and protozoal counts were significantly (p<0.05) higher for the RUMC, RU, RMo and RRC diets. Total feed and rice straw intakes were highest for RUMC (p<0.05) and lowest for the RMi and RMo diets, but in sacco degradability of four different roughages were not significantly different among diets. In Exp. 2, rumen pHs of the diets differed significantly and (p<0.01) ranged from 7.04 - 7.19. Ruminal $NH_3-N$ concentrations (mg/100 ml) were also significantly different (p<0.05), and higher for the RGUMC, G and GUMC diets. The total counts of bacteria and protozoa were significantly (p<0.05) higher for the RGUMC, G and GUMC diets. The total feed intake and roughage intake were significantly (p<0.05) higher for the RGUMC, G and GUMC diets compared to the RG diet. Correspondingly, LW changes also differed among treatments (p=0.06). It was concluded that there were significant increases in rumen $NH_3-N$ concentration, microbial populations and feed intake in the buffaloes by UMC supplementation, whereas the significant difference in in sacco DM degradation was not found by any type of supplementation. There seemed to be a need of a combination of urea, molasses, minerals and other protein nitrogen sources to enhance rice straw intake. Adding grass to the rice straw diet at 0.25% LW (DM) should also be considered to maintain buffalo rumen function and production with UMC supplementation, when rice straw is the main roughage.

Determination of Optimal Conditions of Pressure Toasting on Legume Seeds for Dairy Deed Industry : I. Effects of Pressure Toasting on Nutritive Values of Lupinus albus in Lactating Dairy Cows

  • Yu, P.;Goelema, J.O.;Tamminga, S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.12 no.8
    • /
    • pp.1205-1214
    • /
    • 1999
  • Whole lupinus albus seeds were pressure toasted at temperatures of 100, 118 and $136^{\circ}C$ for 3, 7, 15 and 30 min to study rumen degradation and post-rumen digestion and to determine optimal heating conditions for the Dutch dairy feed industry. In sacco nylon bag and mobile bag techniques were employed for rumen and intestine incubations to determine ruminal degradation characteristics and intestinal digestion of crude protein (CP) in 4 lactation rumen cannulated and 4 lactating intestinal cannulated Dutch dairy cows fed 47% hay and 53% concentrate according to Dutch dairy requirements. Measured rumen degradation characteristics were soluble fraction (S), undegradable fraction (U), potentially degradable fraction (D), lag time (T0) and rate of degradation (Kd) of insoluble but degradable fraction. Percentage bypass feed protein (BCP), ruminal microbial protein synthesized based on available nitrogen (N_MP) and that based on available energy (E_MP), true protein supplied to the small intestine (TPSI), truly absorbed BCP (ABCP), absorbed microbial protein (AVP) in the small intestine, endogenous protein losses in the digestion (ENDP), true digested protein in the small intestine (TAP or DVE in Dutch) and degraded protein balance (PDB or OEB in Dutch) were totally evaluated using the new Dutch DVE/OEB System. Pressure toasting decreased (p<0.001) rumen degradability of CP. It reduced S (p<0.05) and Kd (p=0.06), increased D (p<0.05) and U (p<0.01) but did not alter T0 (p>0.05), thus resulting in dramatically increased BCP (p<0.001) with increasing time and temperature from 73.7 (raw) up to 182.5 g/kg DM ($136^{\circ}C/15min$). Although rumen microbial protein synthesized based on available energy (E_MP) was reduced, true protein (microbial and bypass feed protein) supplied to the small intestine (TPSI) was increased (p<0.001) from 153.1 (raw) to 247.6 g/kg DM ($136^{\circ}C/15min$). Due to digestibility of BCP in the intestine not changing (p>0.05) average 87.8%, the absorbed BCP increased (p<0.001) from 62.3 (raw) to 153.7 g/kg DM ($136^{\circ}C/15min$). Therefore DVE value of true digested protein in the small intestine was significantly increased (p<0.001) from 118.9 (raw) to 197.0 g/kg DM ($136^{\circ}C/15min$) and OEB value of degraded protein balance was significantly reduced (p<0.001) from 147.2 (raw) to 63.1 g/kg DM ($136^{\circ}C/15min$). It was concluded that pressure toasting was effective in shifting degradation of CP of lupinus albus from the rumen to small intestine without changing intestinal digestion. Further studies are required on the degradation and digestion of individual amino acids and on the damaging effects of processing on amino acids, especially the first limiting amino acids.

Productivity and Nutritive Values of Different Fractions of Oil Palm (Elaeis guineensis) Frond

  • Islam, M.;Dahlan, I.;Rajion, M.A.;Jelan, Z.A.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.13 no.8
    • /
    • pp.1113-1120
    • /
    • 2000
  • Productivity, nutrient contents, in vitro gas production and in sacco degradability of different fractions and whole OPF were determined to assess the feeding value of OPF as a ruminant feed. An in vivo digestibility trial was also carried out using goat. Freshly harvested OPF was randomly collected, partitioned and weighed. An OPF from 21 years older palm weighed 13.4 kg and the annual fresh matter yield of petiole, leaflet and midrib was 46.5, 11.8 and 3.4 ton/ha, respectively. Leaflet contained 439, 926, 698, 501, 168, 196, 748 and 52 (g/kg) of dry matter (DM), organic matter (OM), neutral detergent fiber (NDF), acid detergent fiber (ADF), cellulose (CE), hemicellulose (HC), total carbohydrate (TC) and non fiber carbohydrate (NFC), respectively. Petiole contained lower (p<0.01) DM, CP and EE contents than leaflet. Organic matter, CE and TC contents were higher (p<0.01) in petiole compared to leaflet. Silica and lignin contents were highest (p<0.01) in midrib followed by leaflet, whole OPF and least in petiole. The Ca, P, Na, K and Mg contents (g/100 g DM) of leaflet were 0.529, 0.182, 0.039, 0.876, and 0.168, respectively. In vitro DM digestibility (g/100 g) at 48 h of leaflet, petiole and midrib was 32.7, 38.7 and 30.2, respectively. The in sacco DM degradation (g/100 g) at 48 h of leaflet was higher than that of whole OPF, petiole and midrib. The in vivo digestibility of DM, OM, CP and ADF of whole OPF was 52, 56, 43 and 26%, respectively. It can be concluded that leaflet is the most nutritious fraction of OPF and midrib is the least. The nutrient content and digestibility of the whole OPF showed that OPF could be an alternative roughage source for ruminant diets.

In-sacco Degradability of Dietary Combinations Formulated with Naturally Fermented Wheat Straw as Sole Roughage

  • Pannu, M.S.;Kaushal, J.R.;Wadhwa, M.;Bakshi, M.P.S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.15 no.9
    • /
    • pp.1307-1311
    • /
    • 2002
  • Twelve dietary combinations were prepared using 70 parts of fermented wheat straw (FWS) as the sole roughage supplemented with 30 parts of either the low protein concentrate mixture (Conc.-I), high protein concentrate mixture (conc.-II), maize grains (M), solvent extracted mustard cake (DMC), deoiled rice bran (DRB), uromol bran mixture (UBM), deep stacked poultry litter (DSPL), dried poultry droppings (DPD), M-DMC mixture (50:50), M-UBM mixture (50:50), M-DPD mixture (50:50) or M-UBM-DPD mixture (50:25:25) and evaluated by in-sacco technique. The above dietary combinations were also evaluated by changing the roughage to concentrate ratio to 60:40. The digestion kinetics for DM and CP revealed that FWS:DPD had the highest, whereas, the FWS:M-DMC had the lowest rapidly soluble fraction. The potentially degradable fraction was found to be maximum in FWS:M and minimum in FWS:DPD dietary combinations. The higher degradation rate of FWS:DRB and FWS:UBM combinations was responsible for their significantly (p<0.05) higher effective degradability as compared to other combinations. The highest undegradable fraction noted in FWS:M-UBM-DPD followed by FWS:DMC was responsible for high rumen fill values. The FWS:DRB, FWS:UBM and FWS:DPD combinations had higher potential for DM intake. The dietary combination with higher concentrate level (60:40) was responsible for higher potentially degradable fraction, which was degraded at a faster rate resulting in significantly higher effective degradability as compared to the corresponding dietary combination with low concentrate level (70:30). The low undegradable fraction in the high concentrate diet was responsible for low rumen fill values, which predicted of high potential for DM intake. Out of 24 dietary combinations, FWS with either of UBM, DRB, DMC, Maize, M-DMC or DPD in 70:30 ratio supplemented with minerals and vitamin A in comparison to conventional feeding practice (roughage and concentrate mixture) could be exploited as complete feed for different categories of ruminants.

Relative Palatability to Sheep of Some Browse Species, their In sacco Degradability and In vitro Gas Production Characteristics

  • Abdulrazak, S.A.;Nyangaga, J.;Fujihara, T.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.14 no.11
    • /
    • pp.1580-1584
    • /
    • 2001
  • A study was conducted to estimate the nutritive value of some selected acacia forages using palatability index, in sacco degradability and in vitro gas production characteristics. Ten wethers (mean wt. $18{\pm}3.5kg$) were offered Acacia tortilis, Acacia nilotica, Acacia mellifera, Acacia brevispica, Acacia Senegal and Leucaena leucocephala (control) using a cafeteria system to determine the species preference by the animals. The acacia species were rich in nitrogen and showed variable palatability pattern. Significant (p<0.05) differences in relative palatability index (RPI) were detected among the species with the following ranking: brevispica > leucaena > mellifera > tortilis > Senegal > nilotica. Acacia nilotica appeared to be of low relative palatability with RPI of 24% and this was attributed to relatively high phenolic concentrations. The DM potential degradability (B) and rate of degradation (c) of the species were significantly (p<0.05) different, ranging from 40.1 to 59.1% and 0.0285 to 0.0794/h respectively. Acacia species had moderate levels of rumen undegradable protein, much higher than that in leucaena. In vitro gas production results indicated the effect of polyphenolic compounds on the fermentation rate, with lower gas production recorded from A. nilotica and tortilis. Based on RPI, A. brevispica and mellifera were superior to the rest and comparable to L. leucocephala. Long-term feeding trials are required with the superior species when used as protein supplements to poor quality diets.

Effect of Season and Fertilizer on Species Composition and Nutritive Value of Native Grasses

  • Khan, R.I.;Alam, M.R.;Amin, M.R.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.12 no.8
    • /
    • pp.1222-1227
    • /
    • 1999
  • Effect of three major cropping seasons and five fertilizer treatments on botanical composition, nutritional composition and in sacco digestibility of native grasses grown in 30 experimental plots of a medium fertile land was determined. It was observed that all the major grass species were grown in all seasons but their predominancy of growth was different. During the study the predominant grass species were Panicum repens (Angta), Fimvristylis miliacea (Joina), Cyanolis axillaries (Kanainala), Cynodon dactylon (Durba) and Cyperus iria (Phulchaise) which contributed about 27, 20, 13, 11 and 9% of the total grass yield, respectively. Dry matter (DM) contents was higher in dry followed by monsoon and summer seasons (p<0.05). Crude protein (CP) content in the summer and monsoon appeared to be higher (p<0.05) than that of dry season. Organic matter (OM) and neutral detergent fibre (NDF) were higher (p<0.05) in dry and monsoon than in summer season. Application of urea fertilizer and cowdung increased 28.2% of CP content of the grasses, but decreased 19.5 and 9.8% of DM and NDF contents, respectively. The potential degradation of DM and CP of the grasses grown in summer were 4.1 and 8.4% and 3.9 and 5.8% higher than those of monsoon and dry seasons, respectively, and both of these increased (11.3 and 5.9%, respectively) with the application of cowdung and urea fertilizer.

Rumen pH and Ammonia Nitrogen of Cattle Fed Different Levels of Oil Palm (Elaeis guineensis) Frond Based Diet and Dry Matter Degradation of Fractions of Oil Palm Frond

  • Islam, M.;Dahlan, I.;Rajion, M.A.;Jelan, Z.A.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.13 no.7
    • /
    • pp.941-947
    • /
    • 2000
  • Three fistulated Malaysian local bulls were used in a $3{\times}3$ Latin square design to determine the effects of different levels of concentrate with oil palm (Elaeis guineensis Jacq.) frond (OPF) on rumen pH and $NH_3$-N concentration, and DM degradability of different fractions of OPF. Three diets namely, 60% OPF pellet and 40% concentrate (Diet 1), 50% OPF pellet and 50% concentrate (Diet 2) and 40% OPF pellets and 60% concentrate (Diet 3) were used. The levels of concentrate in the diets affected rumen pH and $NH_3$-N concentration. The pH and $NH_3$-N concentration almost in all hourly samples did not show any difference (p>0.05) among the diets except the 6 h and 9 h samples. The highest (p<0.01) $NH_3$-N concentration was obtained on Diet 3 followed by Diet 2 and Diet 1, but there was a slightly higher (p>0.05) pH on Diet 1. The $NH_3$-N concentrations of rumen liquor at 9 h sampling on Diet 1 and Diet 2 were below the critical level (50 mg/liter) required for efficient fermentation of fibrous feeds. The in sacco DM degradation of different fractions of OPF was affected by diets. The DM degradation of fractions of OPF was higher on Diet 3, which showed differences (p<0.01) with the other diets. It was found that a higher level of concentrate (60%) with OPF gave a higher rumen $NH_3$-N concentration that increased the DM degradation of OPF fractions. The results showed that OPF could support an efficient rumen function in terms of $NH_3$-N concentration and pH when ${\leq}50%$ in the diet. A higher level of OPF (>50%) does not support an efficient rumen fermentation in terms of $NH_3$-N concentration, and resulted in lower DM degradation values of the fractions. The results suggested that there is a need to supplement additional nitrogen to OPF based diets.

OPTIMISING CALIBRATION TRANSFER TO MEASURE DEGRADABILITY PARAMETERS OF HAYS AND DEHYDRATED FORAGES

  • Andueza, Donato;Munoz, Fernando;Martinez, Adela;De La Roza, Begona
    • Proceedings of the Korean Society of Near Infrared Spectroscopy Conference
    • /
    • 2001.06a
    • /
    • pp.1268-1268
    • /
    • 2001
  • The availability of in vivo and in sacco degradability values are limited because those methods require work with fistulated animals and are rather complicated, labour intensive and expensive. That is to say, the dynamics and logistics of the methodology result in considerable work, due to limitations on the amount of samples, number of bags that can be placed in an animal and different time intervals to perform kinetic studies. Therefore, a simpler method is necessary to estimate the degradation characteristics of the feed. In this way, near infrared reflectance spectroscopy has been used to predict degradation characteristics of forages. In other hand, the possibility of achieving successful transfer of spectra and equations between instruments is closely related. The objective of this study was to confirm the potential of NIR to optimize work conditions to avoid duplicated efforts in collaborative trials on animal feeds evaluation between research institutions. For this purpose, one set with forty hays and dehydrated forages samples from SERIDA and ten samples with the same characteristics from SIA, were be used to create a spectral database. A calibration was developed using samples from degradation essays made in SERIDA to predict dry matter and crude protein degradability. With the addition of five samples from SIA in original calibration set, the effect of different origin and location was compensated.

  • PDF

Estimation of Ruminal Degradation and Intestinal Digestion of Tropical Protein Resources Using the Nylon Bag Technique and the Three-step In vitro Procedure in Dairy Cattle on Rice Straw Diets

  • Promkot, C.;Wanapat, Metha;Rowlinson, P.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.20 no.12
    • /
    • pp.1849-1857
    • /
    • 2007
  • The experiment was carried out using fistulated multiparous Holstein Friesian crossbred (75% Holstein Friesian and 25% Red Sindhi) dairy cows in their dry period fed on untreated rice straw to evaluate the nutritive value of local protein feed resources using the in sacco method and in vitro pepsin-pancreatin digestion. Experimental feeds were cottonseed meal (CSM); soybean meal (SBM); dried brewery's grains (DBG); palm kernel meal (PSM); cassava hay (CH); leucaena leaf meal (LLM). Each feedstuff was weighed into duplicate nylon bags and incubated in each of the two rumen fistulated cows for 0, 2, 4, 8, 16, 24, and 48 h. Rumen feed residues from bags of 16 h incubation were used for estimation of lower gut digestibility by the technique of in vitro pepsin-pancreatin digestion. Ruminal ammonia-nitrogen ($NH_3-N$) concentrations did not differ between treatments or time with a mean of 5.5 mg%. Effective degradability of DM of CSM, SBM, DBG, PSM, CH and LLM were 41.9, 56.1, 30.8, 47.0, 41.1 and 47.5%, respectively. Effective degradabilities of the CP in feedstuffs were 49.6, 59.2, 40.9, 33.5, 47.3 and 65.0% for the respective feedstuffs. The CP in vitro pepsin-pancreatin digestibility as ranked from the highest to the lowest were SBM, CSM, LLM, CH, DBG, PSM, respectively. The intestinal and total tract digestion of feedstuffs in the current study were relatively lower than that obtained from previous literature. The results of this study indicate that SBM and LLM were highly degradable in the rumen, while CH, CSM and DBG were less degradable and, hence resulted in higher rumen undegradable protein. Soybean meal and LLM could be used to improve rumen ecology whilst CH, CSM and DBG could be used as rumen by-pass protein for ruminant feeding in the tropics.