• Title/Summary/Keyword: Imputation method

Search Result 132, Processing Time 0.021 seconds

Identification of Differentially Expressed Genes Using Tests Based on Multiple Imputations

  • Kim, Sang Cheol;Yu, Donghyeon
    • Quantitative Bio-Science
    • /
    • v.36 no.1
    • /
    • pp.23-31
    • /
    • 2017
  • Datasets from DNA microarray experiments, which are in the form of large matrices of expression levels of genes, often have missing values. However, the existing statistical methods including the principle components analysis (PCA) and Hotelling's t-test are not directly applicable for the datasets having missing values due to the fact that they assume the observed dataset is complete in general. Many methods have been proposed in previous literature to impute the missing in the observed data. Troyanskaya et al. [1] study the k-nearest neighbor (kNN) imputation, Kim et al. [2] propose the local least squares (LLS) method and Rubin [3] propose the multiple imputation (MI) for missing values. To identify differentially expressed genes, we propose a new testing procedure when the missing exists in the observed data. The proposed procedure uses the Stouffer's z-scores and combines the test results of individual imputed samples, which are dependent to each other. We numerically show that the proposed test procedure based on MI performs better than the existing test procedures based on single imputation (SI) by comparing their ROC curves. We apply the proposed method to analyzing a public microarray data.

Comparison of imputation methods for item nonresponses in a panel study (패널자료에서의 항목무응답 대체 방법 비교)

  • Lee, Hyejung;Song, Juwon
    • The Korean Journal of Applied Statistics
    • /
    • v.30 no.3
    • /
    • pp.377-390
    • /
    • 2017
  • When conducting a survey, item nonresponse occurs if the respondent does not respond to some items. Since analysis based only on completely observed data may cause biased results, imputation is often conducted to analyze data in its complete form. The panel study is a survey method that examines changes of responses over time. In panel studies, there has been a preference for using information from response values of previous waves when the imputation of item nonresponses is performed; however, limited research has been conducted to support this preference. Therefore, this study compares the performance of imputation methods according to whether or not information from previous waves is utilized in the panel study. Among imputation methods that utilize information from previous responses, we consider ratio imputation, imputation based on the linear mixed model, and imputation based on the Bayesian linear mixed model approach. We compare the results from these methods against the results of methods that do not use information from previous responses, such as mean imputation and hot deck imputation. Simulation results show that imputation based on the Bayesian linear mixed model performs best and yields small biases and high coverage rates of the 95% confidence interval even at higher nonresponse rates.

Imputation for Binary or Ordered Categorical Traits Based on the Bayesian Threshold Model (베이지안 분계점 모형에 의한 순서 범주형 변수의 대체)

  • Lee Seung-Chun
    • The Korean Journal of Applied Statistics
    • /
    • v.18 no.3
    • /
    • pp.597-606
    • /
    • 2005
  • The nonresponse in sample survey causes a problem when it comes time to analyze dataset in public-use files where the user has only complete-data methods available and has limited information about the reasons for nonresponse. Recently imputation for nonresponse is becoming a standard approach for handling nonresponse and various imputation methods have been devised . However, most imputation methods concern with continuous traits while many interesting features are measured by binary or ordered categorical scales in sample survey. In this note. an imputation method for ignorable nonresponse in binary or ordered categorical traits is considered.

A Modified Grey-Based k-NN Approach for Treatment of Missing Value

  • Chun, Young-M.;Lee, Joon-W.;Chung, Sung-S.
    • Journal of the Korean Data and Information Science Society
    • /
    • v.17 no.2
    • /
    • pp.421-436
    • /
    • 2006
  • Huang proposed a grey-based nearest neighbor approach to predict accurately missing attribute value in 2004. Our study proposes which way to decide the number of nearest neighbors using not only the deng's grey relational grade but also the wen's grey relational grade. Besides, our study uses not an arithmetic(unweighted) mean but a weighted one. Also, GRG is used by a weighted value when we impute missing values. There are four different methods - DU, DW, WU, WW. The performance of WW(Wen's GRG & weighted mean) method is the best of any other methods. It had been proven by Huang that his method was much better than mean imputation method and multiple imputation method. The performance of our study is far superior to that of Huang.

  • PDF

A Study on the Treatment of Missing Value using Grey Relational Grade and k-NN Approach

  • Chun, Young-Min;Chung, Sung-Suk
    • 한국데이터정보과학회:학술대회논문집
    • /
    • 2006.04a
    • /
    • pp.55-62
    • /
    • 2006
  • Huang proposed a grey-based nearest neighbor approach to predict accurately missing attribute value in 2004. Our study proposes which way to decide the number of nearest neighbors using not only the dong's grey relational grade but also the wen's grey relational grade. Besides, our study uses not an arithmetic(unweighted) mean but a weighted one. Also, GRG is used by a weighted value when we impute a missing values. There are four different methods - DU, DW, WU, WW. The performance of WW(wen's GRG & weighted mean) method is the best of my other methods. It had been proven by Huang that his method was much better than mean imputation method and multiple imputation method. The performance of our study is far superior to that of Huang.

  • PDF

A Naive Multiple Imputation Method for Ignorable Nonresponse

  • Lee, Seung-Chun
    • Communications for Statistical Applications and Methods
    • /
    • v.11 no.2
    • /
    • pp.399-411
    • /
    • 2004
  • A common method of handling nonresponse in sample survey is to delete the cases, which may result in a substantial loss of cases. Thus in certain situation, it is of interest to create a complete set of sample values. In this case, a popular approach is to impute the missing values in the sample by the mean or the median of responders. The difficulty with this method which just replaces each missing value with a single imputed value is that inferences based on the completed dataset underestimate the precision of the inferential procedure. Various suggestions have been made to overcome the difficulty but they might not be appropriate for public-use files where the user has only limited information for about the reasons for nonresponse. In this note, a multiple imputation method is considered to create complete dataset which might be used for all possible inferential procedures without misleading or underestimating the precision.

A Comparison of Survival Distributions with Unequal Censoring Distributions (이질적인 중도절단분포 하에서 생존분포의 동일성 검정법 비교연구)

  • Song, Sujeong;Lee, Jae Won
    • The Korean Journal of Applied Statistics
    • /
    • v.27 no.1
    • /
    • pp.1-11
    • /
    • 2014
  • The Weighted Logrank test and its special case, Logrank test are widely used to compare survival distributions; however, these methods are inappropriate when the sample size is small or censoring distributions are not equal since they use test statistics from approximate distributions. A permutation test can be an alternative for small sample cases; however, this should be used only when censoring distributions are equal. To handle cases with small sample size and unequal censoring distributions, the permutation-imputation method was developed to compare two survival distributions. In this paper, approximate method, permutation method and permutation-imputation method were compared using a Logrank test and Prentice-Wilcoxon test for three or more survival distributions comparison.

Considering of the Rainfall Effect in Missing Traffic Volume Data Imputation Method (누락교통량자료 보정방법에서 강우의 영향 고려)

  • Kim, Min-Heon;Oh, Ju-Sam
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.14 no.2
    • /
    • pp.1-13
    • /
    • 2015
  • Traffic volume data is basic information that is used in a wide variety of fields. Existing missing traffic volume data imputation method did not take the effect on the rainfall. This research analyzed considering of the rainfall effect in missing traffic volume data imputation method. In order to consider the effect of rainfall, established the following assumption. When missing of traffic volume data generated in rainy days it would be more accurate to use only the traffic volume data of the past rainy days. To confirm this assumption, compared for accuracy of imputed results at three kinds of imputation method(Unconditional Mean, Auto Regression, Expectation-Maximization Algorithm). The analysis results, the case on consideration of the rainfall effect was more low error occurred.

A Comparative Study of Microarray Data with Survival Times Based on Several Missing Mechanism

  • Kim Jee-Yun;Hwang Jin-Soo;Kim Seong-Sun
    • Communications for Statistical Applications and Methods
    • /
    • v.13 no.1
    • /
    • pp.101-111
    • /
    • 2006
  • One of the most widely used method of handling missingness in microarray data is the kNN(k Nearest Neighborhood) method. Recently Li and Gui (2004) suggested, so called PCR(Partial Cox Regression) method which deals with censored survival times and microarray data efficiently via kNN imputation method. In this article, we try to show that the way to treat missingness eventually affects the further statistical analysis.

Comparison of binary data imputation methods in clinical trials (임상시험에서 이분형 결측치 처리방법의 비교연구)

  • An, Koosung;Kim, Dongjae
    • The Korean Journal of Applied Statistics
    • /
    • v.29 no.3
    • /
    • pp.539-547
    • /
    • 2016
  • We discussed how to handle missing binary data clinical trials. Patterns of occurring missing data are discussed and introduce missing binary data imputation methods that include the modified method. A simulation is performed by modifying actual data for each method. The condition of this simulation is controlled by a response rate and a missing value rate. We list the simulation results for each method and discussed them at the end of this paper.