• Title/Summary/Keyword: Impulsive Breaking Wave Force

Search Result 10, Processing Time 0.021 seconds

Analysis of Offshore Wind Tower against Impulsive Breaking Wave Force by P-Y Curve

  • Kim, Nam-Hyeong;Koh, Myung-Jin
    • Journal of Navigation and Port Research
    • /
    • v.39 no.5
    • /
    • pp.385-391
    • /
    • 2015
  • In offshore, various external forces such as wind force, tidal current and impulsive breaking wave force act on offshore wind tower. Among these forces, impulsive breaking wave force is especially more powerful than other forces. Therefore, various studies on impulsive breaking wave forces have been carried out, but the soil reaction are incomplete. In this study, the p-y curve is used to calculate the soil reaction acting on the offshore wind tower when an impulsive breaking wave force occurs by typhoon. The calculation of offshore wind tower against impulsive breaking wave force is applied for the multi-layered soil. The results obtained in this study show that although the same wave height is applied, the soil reaction generated by impulsive breaking wave force is greater than the soil reaction generated by wave force.

Study on the P-Y Curve around the Mono-pile Foundation of Offshore Wind Turbine by Impulsive Breaking Wave Force

  • Go, Myeongjin;Kim, Namhyeong;Ko, Yongsu
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2014.06a
    • /
    • pp.253-254
    • /
    • 2014
  • In offshore, various external forces such as wind force, wave force and impulsive breaking wave force act on offshore structures. Many researches about this forces are published. Kim and Cao(2008) published researche on wave force of vertical cylinder. Kim and Go(2013) performed research on the subgrade reaction by external forces. Among this forces, impulsive breaking force is more massive than other forces, especially. Therefore, the studies about impulsive breaking wave forces have been carried out. Chun and Shim(1999) analyzed dynamic behavior of cylindrical pile subjected to impulsive breaking wave force. In this study, when the impulsive breaking wave force acts on the offshore wind turbine, the subgrade reaction acting on the mono-pile of the offshore wind turbine is calculated by p-y curve. The calculation is carried out to the multi-layered.

  • PDF

Wave force Acting on the Artificial Rock installed on a Submerged Breakwater in a Regular Wave field (잠제상에 설치된 표식암(의암)에 작용하는 규칙파파력의 실험적 연구)

  • 배기성;허동수
    • Journal of Ocean Engineering and Technology
    • /
    • v.16 no.6
    • /
    • pp.7-17
    • /
    • 2002
  • Recently, artificial rocks, instead of buoys, have been placed on the submerged breakwater to indicate its location. The accurate estimation of wave forces on these rocks is deemed necessary for their stability design. Characteristics of the wave force, however, are expected . to be very complicated because of the occurrence of breaking or post-breaking waves. In this regard, wave forces exerted on an artificial rock have been investigated in this paper. The maximum wave force has been found to strongly dependent on the location and shape of the artificial rock that is placed on the submerged breakwater. The plunging breaker occurs near the loading cram edge of a submerged breakwater, which cause impulsive breaking wave force on the rock. Using the Morison equation, with the velocity and acceleration at the front face of the artificial rock and varying water surface level, it is possible to estimate wave forces, even impulsive breaking wave forces, that are acting on the rock installed on a submerged breakwater. The vertical wave force is also found to depend, significantly, on the buoyant force.

A STUDY ON THE HYDROELASTIC RESPONSE OF A PLATE UNDER IMPULSIVE PRESSURES DUE TO BREAKING WAVES

  • Park, Hang-Shoon;Lee, Dong-Yeon
    • Journal of Theoretical and Applied Mechanics
    • /
    • v.2 no.1
    • /
    • pp.1-14
    • /
    • 1996
  • In this paper, breaking waves are generated in a 2-D wave tank and simulated by using a higher-order boundary element method. A piston-type wavemaker is operated by signals composed of elementary waves. The phase of elementary waves is determined by the linear theory such that they are focused to a prescribed position. Calculated plunging waves coincide well with experiment. A steel box with different plate thicknesses is installed at a predetermined position in the tank. Measured impulsive pressures due to breaking waves are found to be 0.8-1.2$\rho$C2, where $\rho$ corresponds to water density and C to wave celerity. The transverse displacement of the plate is described in terms of modal eigenfunctions. The natural frequencies measured by impact tests in air for thin plate coincide with the computational and theoretical values. The radiationpotential due to plate vibration is derived and the radiation force is expressed in terms of hydroelastic added mass and damping forces. Comparison of natural frequencies of plate in water proves that hydroelastic added mass and damping are properly considered. The measured strain due to regular waves supports the calculated one, but there are apparent discrepancies between theory and experiment in the impulsive case.

Dynamic Behavior of Cylindrical Pile Subjected to Impulsive (衝擊碎波力의 작용에 의한 圓形파일의 動的擧動)

  • 전인식;심재설
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.11 no.2
    • /
    • pp.87-94
    • /
    • 1999
  • The Morison's formula has been commonly used in the determination of wave forces of sinusoidal waves acting on coastal or ocean structures of pile-supported type. In the case that plunging breakers are incident, the structures are subjected to impulsive breaking wave forces which are normally much larger than the Morison's. However, the impulsive breaking wave forces act in a very short time, and hence a dynamic structural analysis should be done to determine whether or not to include the forces in the design force items. In the present study, numerical methods for calculating the dynamic response of a vertically located cylindrical pile are developed. Static and dynamic displacements are then compared through several example analyses varying the structural properties of pile.

  • PDF

Numerical analysis of dynamic response of jacket structures subject to slamming forces by breaking waves

  • Woo, Chanjo;Chun, Insik;Navaratnam, Christy Ushanth;Shim, Jaeseol
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.9 no.4
    • /
    • pp.404-417
    • /
    • 2017
  • The present study numerically analyzed the dynamic behavior of 3D framed structures subject to impulsive slamming forces by violent breaking waves. The structures were modeled using multiple lumped masses for the vertical projections of each member, and the slamming forces from the breaking waves were concentrated on these lumped masses. A numerical algorithm was developed to properly incorporate the slamming forces into a dynamic analysis to numerically determine the structural responses. Then, the validity of the numerical analysis was verified using the results of an existing hydraulic experiment. The numerical and experimental results for various model structures were generally in good agreement. The uncertainties concerning the properties of the breaking waves used in the verification are also discussed here.

3D-Numerical Simulation of Wave Pressure Acting on Caisson and Wave Characteristics near Tip of Composite Breakwater (혼성방파제의 케이슨에 작용하는 파압과 선단 주변에서 파랑특성에 관한 3차원수치시뮬레이션)

  • Choi, Goon-Ho;Jun, Jae-Hyoung;Lee, Kwang-Ho;Kim, Do-Sam
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.32 no.3
    • /
    • pp.180-201
    • /
    • 2020
  • It has been widely known that the effect of diffracted waves at the tip of composite breakwater with finite length causes the change of standing wave height along the length of breakwater, the spatial change of wave pressure on caisson, and the occurrence of meandering damage on the different sliding distance in sequence. It is hard to deal with the spatial change of wave force on trunk of breakwater through the two-dimensional experiment and/or numerical analysis. In this study, two and three-dimensional numerical techniques with olaFlow model are used to approach the spatial change of wave force including the impulsive breaking wave pressure applied to trunk of breakwater, the effect of rear region, and the occurrence of diffracted waves at the tip of caisson located on the high crested rubble mound. In addition, it is thoroughly studied the mean wave height, mean horizontal velocity, and mean turbulent kinetic energy through the numerical analysis. In conclusion, it is confirmed that the larger wave pressure occurs at the front wall of caisson around the still water level than the original design conditions when it generates the shock-crushing wave pressure checked by not two-dimensional analysis, but three-dimensional analysis through the change of wave pressure applied to the caisson along the length of breakwater.

Experimental Study on Irregular Wave Forces Acting on a Marker Rock Installed on a Submerged Breakwater (수중방파제 천단상의 표식암에 작용하는 불규칙파의 파력특성에 관한 실험적 연구)

  • Hur, Dong Soo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.4B
    • /
    • pp.413-420
    • /
    • 2006
  • The construction of a submerged breakwater has become increasing due to their multiple effects on the coastal zone. Recently, marker rocks have been installed on the submerged breakwater to indicate its position to the vessels instead of buoy systems, since a buoy is not only improper for the ocean view, but also its mooring system may be damaged by the impulsive wave force caused by wave breaking on the breakwater. The accurate estimation of wave forces on such rocks is deemed necessary for their stability design. In this study, the characteristics of irregular wave forces acting on a marker rock, which was installed on a submerged breakwater, was investigated on the basis of laboratory experiments. It was revealed that the dimensionless highest one-third wave force tends to decrease with increasing the installation distance of a marker rock from the leading crown edge of a submerged breakwater. Also, the drag and inertia coefficients for irregular wave forces, which were obtained using the Morison equation, were investigated in relation to K.C. number.

Numerical Simulation of Wave Pressure Acting on Caisson and Wave Characteristics near Tip of Composite Breakwater (for One Directional Irregular Waves) (혼성방파제 케이슨에 작용하는 파압과 선단 주변에서 파랑특성에 관한 수치모의(일방향불규칙파에 대해))

  • Jun, Jae-Hyoung;Choi, Goon-Ho;Lee, Kwang-Ho;Kim, Do-Sam
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.32 no.6
    • /
    • pp.531-552
    • /
    • 2020
  • In the previous study, both the wave characteristics at the tip of composite breakwater and on caisson were investigated by applying olaFlow numerical model of three-dimensional regular waves. In this paper, the same numerical model and layout/shape of composite breakwater as applied the previous study under the action of one directional irregular waves were used to analyze two and three-dimensional spatial change of wave force including the impulsive breaking wave pressure applied to trunk of breakwater, the effect of rear region, and the occurrence of diffracted waves at the tip of caisson located on the high crested rubble mound. In addition, the frequency spectrum, mean significant wave height, mean horizontal velocity, and mean turbulent kinetic energy through the numerical analysis were studied. In conclusion, the larger wave pressure occurs at the front wall of caisson around the still water level than the original design conditions when it generates the shock-crushing wave pressure in three-dimensional analysis condition. Which was not occurred by two-dimensional analysis. Furthermore, it was confirmed that the wave pressure distribution at the caisson changes along the length of breakwater when the same significant incident wave was applied to the caisson. Although there is difference in magnitude, but its variation shows the similar tendency with the case of previous study.

Numerical Analysis of Wave Impact Forces in Numerical Wave Basin (수치파 수조를 이용한 파랑 충격력 수치해석)

  • Shin, Young-Seop;Hong, Key-Yong
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.1
    • /
    • pp.205-210
    • /
    • 2006
  • The impact forces of the highly nonlinear waves are one of the important factors in designing the ocean structures. The impact forces are very difficult to analyze numerically and experimentally because they are impulsive in magnitude and occur instantaneously. In this study the numerical program based on N.S. equations are used to investigate the impact forces of steep waves where the waves are gene rated by the wave maker in the numerical wave basin. The arbitrary steep waves are generated by the superposition of waves of single frequency and the impact forces on vertical cylinder are simulated on the multiblock grids. V.O.F. and the local height function methods are used to track the free surfaces. To validate the numerical analysis the numerical results are compared with the experimental ones and the acceptable agreements are found. It is thought that more studies on the simulations of the incoming breaking waves and the impact forces on the vertical cylinder should be made to obtain the useful results to be applied in the offshore design.

  • PDF