• Title/Summary/Keyword: Impulse-Momentum

Search Result 40, Processing Time 0.024 seconds

Momentum and Average Force applied to Golf Ballm (골프공에 가해진 운동량과 평균력)

  • Shin, Kwang-Seong;Rhee, Yang-Won
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2011.05a
    • /
    • pp.157-158
    • /
    • 2011
  • Golf clubs hit the ball, and golf balls fly with great speed and long distances due to the conflict. In this paper, the size of the momentum after collision of golf clubs and golf balls should seek. Also, the collision times and average force that served of golf clubs and golf balls are obtained. We know that the impulse acting body is equals the change in momentum of a body. And you can see the average force is constant force that the actual strength of a body to give the same impulse instead of force changing by the hour.

  • PDF

A Constitutive Equation with Impulse-Momentum Theory for the Expanded Polypropylene (충격량-운동량 이론을 접목시킨 발포 폴리프로필렌의 구성방정식)

  • Kim, Byeong Kil;Cho, Jae Ung;Jeong, Kwang Young;Kim, Nam Hoon;Oh, Bum S.;Hahn, Youngwon;Cheon, Seong S.
    • Composites Research
    • /
    • v.29 no.3
    • /
    • pp.91-97
    • /
    • 2016
  • In this paper, impulse-momentum theory was coupled to a constitutive equation both for implementing quasi-static and impact characteristics of EPP (Expanded polypropylene). Also, parameters which have physical meanings were expressed as functions of relative density. Simultaneous nonlinear Newton-Raphson method was applied to find the proper values for parameters in the constitutive equation along with quasi-static test data. Results from the impulse-momentum theory coupled constitutive equation showed good agreement with experimental data and the potential to be applied to different material type polymeric foam.

Impact Analysis for Vehicle Accident Reconstruction (자동차 사고 재고성을 위한 충돌 해석)

  • 한인환
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.6 no.2
    • /
    • pp.178-190
    • /
    • 1998
  • We have developed a planar impact model with a capability of reverse calculation to reconstruct various types of automobile collisions. This topic is the main part of what is referred to as accident reconstruction. The model uses the principle of impulse and momentum, and introduces a restitution coefficient and an impulse ratio at the impact center. Based on the car-to-car collision test results, we present how to estimate the restitution coefficient and the impulse ratio from some impact conditions. To validate the model and improve its reliability in accident analysis, the collision analysis has been performer with the estimated parameters. The analysis and experimental results agree well in the kinetic energy loss and the post-impact velocity.

  • PDF

ENTRAINMENT OF SEDIMENT PARTICLES FROM SCOUR HOLE BY TURBULENT VORTICES DOWNSTREAM OF HYDRAULIC STRUCTURE

  • Kim, Jin-Hong;Lee, Sam-Hee
    • Water Engineering Research
    • /
    • v.2 no.4
    • /
    • pp.261-268
    • /
    • 2001
  • This study presents the estimation of the entrainment velocity of sediment particles from the scour hole. Sediment particles are entrained from the scour hole downstream of hydraulic structures by the turbulent vortices. Mathematical form of the entrainment velocity of sediment particles from the scour hole was obtained using the impulse-momentum equation with given value of the vertical component of turbulent velocity of the line vortex. Also, its probability density distribution was obtained with the results that the probability density distribution of the vertical turbulent velocity followed the normal distribution. Experimental results of the entrainment velocity of sediment particles showed relatively good agreements with theoretical ones.

  • PDF

A Constitutive Equation Including Strain Rate Effect for the Expanded Polypropylene (변형률 속도가 고려된 발포 폴리프로필렌의 구성방정식)

  • Kim, Han-Kook;Cheon, Seong S.
    • Composites Research
    • /
    • v.27 no.4
    • /
    • pp.130-134
    • /
    • 2014
  • The purpose of this paper is to build DB in order to Propose new constitutive equations by redefining constitutive equations for Polyurethane presented by Jeong et al. [12] based on Quasi-static test and Impact test DB of Expanded polypropylene using cylindrical specimens with 4 different densities presentsd by Kim et al. [7] for EPP foam and combining the impulse-momentum theory.

Microparticle Impact Motion with Adhesion and Frictional Forces (부착력과 마찰력이 개재된 마이크로 입자 충돌 운동)

  • Han, In-Hwan
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.8
    • /
    • pp.1698-1708
    • /
    • 2002
  • The main topic covered in this paper is that of the impact process, that is, where two bodies come into contact and rebound or stick together. This paper presents how to determine the rebound velocities of a microparticle that approaches a surface with arbitrary initial velocities and relate the impact process to the physical properties of the materials and to the adhesion force. Actual adhesion forces demonstrate a significant amount of energy dissipation in the form of hysteresis, and act generally in a normal to the contact surfaces. Microparticles must also contend with forces tangent to the contact surfaces, namely Coulomb dry friction. The developed model has an algebraic form based on the principle of impulse and momentum and hypothesis of energy dissipation. Finally, several analyses are carried out in order to estimate impact parameters and the developed analytical model is validated using experimental results.

Three-Dimensional Modeling for Impact Behavior Analysis (충돌시 3차원 거동특성 해석을 위한 모델링)

  • 하정섭;이승종
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.353-356
    • /
    • 2002
  • In vehicle accidents, the rolling, pitching, and yawing which are produced by collisions affect the motions of vehicle. Therefore, vehicle behavior under impact situation should be analyzed in three-dimension. In this study, three-dimensional vehicle dynamic equations based on impulse-momentum conservation principles under vehicle impact are introduced for simulation. This analysis has been performed by the real vehicle impact data from JARI and RICSAC. This study suggested each system modeling such as suspension, steering, brake and tire as well as the appropriate vehicle behavior simulation model with respect to pre and post impact.

  • PDF

A Study on the Closing Force according to the Opening Angle of the Door in the Smoke Control System (제연구역 출입문 개방 각도에 따른 폐쇄력에 관한 연구)

  • Oh, Won-Sin;Joung, Suck-Hwan
    • Journal of the Korea Safety Management & Science
    • /
    • v.23 no.4
    • /
    • pp.43-48
    • /
    • 2021
  • In this study, the experiment was conducted on a fire door(W × H = 0.98 m × 2.19 m) installed on the vestibule. The effective leakage area for each opening angles and closing forces derived from the impulse-momentum equation was compared and analyzed with the experimental results. As a result of the experiment, the major factors affecting the door closing forces were the pressure difference and the area of the door. The difference of door closing forces between measured and calculated values by the impulse-momentum equation showed a deviation of less than ±15% at the opening angles of 5°to 10°. At the door opening angle of 2.5°, the dynamic pressure was much higher than the measured static pressure, and this pressure difference is estimated to be air resistance acting to prevent the door from being completely closed.

A Study on the Forward Momentum of a Soft Recoil System (연식주퇴 시스템의 전방운동량에 관한 연구)

  • Park, Sun-Young;Bae, Jae-Sung;Hwang, Jai-Hyuk;Kang, Kuk-Jeong;Ahn, Sang-Tae
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.13 no.6
    • /
    • pp.976-981
    • /
    • 2010
  • A soft-recoil or FOOB (Fire-Out-Of-Battery) system can reduce the recoil force considerably. Its firing sequency is different from that of a conventional or FIB (Fire-In-Battery) system. In FOOB system, the gun is latched and preloaded in its battery position prior to firing. When unlatched, the gun is accelerated to the forward direction and then the forward momentum of the recoil part is generated. Since this momentum reduces the recoil impulse, the recoil force will decrease significantly. When designing the soft-recoil system it is important to design the forward momentum profile of a recoiling part. In the present study, the method to determine the forward momentum has been studied and its optimum value has been obtained theoretically. The numerical simulation of the soft-recoil system is performed to show that the present soft-recoil system works functionally well.

Dynamic Analysis of Multibody Systems Undertaking Impulsive Force using Kane's Method (충격하중을 받는 시스템의 케인 방법을 이용한 다물체 동역학 해석)

  • 김상국;박정훈;유홍희
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.6 no.3
    • /
    • pp.169-176
    • /
    • 1998
  • A method for the dynamic analysis of multibody systems undertaking impulsive force is introduced in this paper. A partial velocity matrix based on Kane's method is introduced to reduce the number of equations to be solved. Only minimum number of equations of motion can be obtained by using the partial velocity matrix. This reduces the computational effort significantly to obtain the dynamic response of the system. At the very moment of the impulse, instead of using the numerical integrator to solve the equations of motion, the impulse and momentum principle is used to obtain the dynamic response. The impulse as wall as the reaction force acting on the kinematic joints can easily calculated too.

  • PDF