• Title/Summary/Keyword: Impulse Turbine

Search Result 104, Processing Time 0.027 seconds

Performance Test of the 30-ton Class Liquid Rocket Engine Turbopump Turbine (30톤급 액체로켓 엔진용 터보펌프 터빈 성능시험)

  • Jeong, Eun-Hwan;Park, Pyun-Goo;Kim, Jin-Han
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.12 no.1
    • /
    • pp.1-6
    • /
    • 2008
  • Performance test of the 30-ton class liquid rocket engine turbopump turbine has been conducted using high pressure cold air. Overall performance of the two kinds of turbine rotors - rotor with knife-edged L.E blades and with rounded L.E blades - has been measured for various rotational speed and turbine pressure ratio. The effect of rotational speed and turbine pressure ratio on the turbine axial force behavior also has been measured in parallel. Test results have revealed that the efficiency of knife edged L.E. turbine is a little bit higher than that of rounded L.E. turbine. The axial force of the turbine varied linearly with respect to rotational speed and its magnitude largely depended on turbine pressure ratio.

Design of a Turbine System for Liquid Rocket Engines (액체로켓용 터빈시스템 설계)

  • Lee, Dae-Sung;Choi, Chang-Ho;Kim, Jin-Han;Yang, Soo-Seok
    • The KSFM Journal of Fluid Machinery
    • /
    • v.5 no.4 s.17
    • /
    • pp.11-18
    • /
    • 2002
  • A turbopump system composed of two pumps and one turbine is considered. The turbine composed of a nozzle and a rotor is used to drive the pumps while gas passes through the nozzle and potential energy is converted to kinetic energy, which forces the rotor blades to spin. In this study, an aerodynamic design of turbine system is investigated with some pre-determined design requirements (i.e., pressure ratio, rotational speed, required power, etc.) following Liquid Rocket Engine (L.R.E.) system specifications. For simplicity of turbine system, impulse-type rotor blades for open-type L.R.E. have been chosen. Usually, the open-type turbine system requires low mass flow-rate compared to close-type system. In this study, a partial admission nozzle is adopted to maximize the efficiency of the open-type turbine system. A design methodology of turbine system was introduced. Especially, partial admission nozzle was designed by means of simple empirical correlations between efficiency and configuration of the nozzle. Finally, a turbine system design is presented for a 10 ton thrust level of L.R.E.

Design of a Turbine System for Liquid Rocket Engine (액체로켓용 터빈시스템 설계)

  • Choi, Chang-Ho;Kim, Jin-Han;Yang, Soo-Seok;Lee, Dae-Sung;Woo, Yoo-Cheol
    • 유체기계공업학회:학술대회논문집
    • /
    • 2000.12a
    • /
    • pp.145-152
    • /
    • 2000
  • A turbopump system composed of two pumps and one turbine is considered. The turbine composed of a nozzle and a rotor is used to drive the pumps while gas passes through the nozzle, potential energy is converted to kinematic energy, which forces the rotor blades to spin. In this study, an aerodynamic design of turbine system is investigated using compressible fluid dynamic theories with some pre-determined design requirements (i.e., pressure ratio, rotational speed, required power etc.) obtained from liquid rocket engine (L.R.E.) system design. For simplicity of turbine system, impulse-type rotor blades for open type L.R.E. have been chosen. Usually, the open-type turbine system requires low mass flow rate compared to close-type system. In this study, a partial admission nozzle Is adopted to maximize the efficiency of the open-type turbine system. A design methodology of turbine system has been introduced. Especially, partial admission nozzle has been designed by means of simple empirical correlations between efficiency and configuration of the nozzle. Finally, a turbine system design for a 10 ton thrust level of L.R.E is presented.

  • PDF

Experimental Investigation of Turbopump Turbine : Turbine Performance and Effect of Nozzle-Rotor Clearance (터보펌프 터빈의 성능 및 노즐-로터 간극의 영향에 대한 실험적 고찰)

  • Jeong Eun-Hwan;Kang Sang-Hun;Shin Dong-Yoon;Park Pyu-Goo;Kim Jin-Han
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.10 no.2
    • /
    • pp.78-86
    • /
    • 2006
  • This paper presents the performance test result of the 30-ton class turbopump turbine. Test has been conducted using high pressure cold air, The turbine overall performance has been measured for various pressure ratio and rotational speed settings. The nozzle-rotor clearance effect on turbine performance also has been tested for the four kinds of the nozzle-rotor clearance values. We found that turbine efficiency rated 51.1% at its design velocity ratio and pressure ratio of 13.5. We also found that turbine efficiency can be increased by 3.5% for approximately 1mm decrement of the nozzle-rotor clearance from its nominal value.

Development of a Velocity Compounded Impulse Turbine for the 75ton Liquid Rocket Engine Application (75톤급 액체로켓엔진 터보펌프용 속도복식 터빈개발)

  • Jeong, Eun-Hwan;Lee, Hang-Gi;Park, Pyun-Goo;Kim, Jin-Han
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.15 no.3
    • /
    • pp.40-46
    • /
    • 2011
  • A velocity-compounded(VC) turbine of the 75ton turbopump was developed as an improved performance backup for a single-rotor base-line turbine. Curvic coupling was used for the connection between rotors and shaft. High temperature torsion test and spin test was performed for the curvic coupling design validation. Aerodynamic performance test revealed that the developed VC turbine can generate 20.5% higher specific power than the base-line turbine. It has been measured that $1^{st}$ rotor of the subject turbine generates 74.1% of total power at design operating condition.

An experimental study on the expansion loss of a supersonic turbine with the cascade position (익렬 위치에 따른 초음속 터빈의 확산 손실에 대한 실험적 연구)

  • Cho, Jong-Jae;Kim, Kui-Soon;Jeong, Eun-Hwan
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2006.11a
    • /
    • pp.387-392
    • /
    • 2006
  • A small supersonic wind tunnel was designed and built to study the flow characteristics of a supersonic impulse turbine cascade. Experiments are performed to find flow characteristics of supersonic turbine with the cascade positions and to find factor of expansion loss. The supersonic cascade with a 2-dimensional supersonic nozzle was tested with the cascade positions. Firstly, the flow was visualized by Z-type Schlieren system. Finally, highly complicated flow patterns including shocks, nozzle-cascade interaction and shock boundary layer interactions, flow characteristics of the supersonic turbine were observed.

  • PDF

Analysis of Performance of Turbine Exhaust Nozzle for Liquid Rocket Engine (액체로켓엔진의 터빈 배기노즐 성능 해석)

  • Cho, Won-Kook;Seol, Woo-Seok
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.316-319
    • /
    • 2008
  • A computational analysis has been conducted on the compressible flow in the turbine exhaust nozzle of the gas generator cycle liquid rocket engine. The commercial CFD code Fluent has been used. Four nozzle designs have been compared to select the turbine exhaust nozzle concept. Three candidates with single nozzle have comparable performance. The model with bifurcated nozzles shows significant performance loss. However it will be better in the view of balanced thrust distribution because of its symmetric geometry.

  • PDF

An experimental study on the flow characteristics of a supersonic turbine cascade with the leading edge chamfer angle (초음속 터빈의 익렬 앞전 모서리각에 따른 유동 특성에 대한 실험적 연구)

  • Cho Jong-Jae;Kim Kui-Soon;Jeong Eun-Hwan
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2006.05a
    • /
    • pp.361-366
    • /
    • 2006
  • A small supersonic wind tunnel was designed and built to study the flow characteristics of a supersonic impulse turbine cascade. The supersonic cascade with a 2-dimensional supersonic nozzle was tested for the leading edge chamfer angle $(\gamma)$ of the supersonic turbine that is the one of the turbine design parameter. Firstly, the flow was visualized by a single pass Schlieren system. Next, total and static pressure of the cascade were measured by a pressure scanning system. Finally, highly complicated flow patterns including shocks, nozzle-cascade interaction and shock boundary layer interactions, flow characteristics of the supersonic turbine were observed.

  • PDF

Optimal Design for the Rotor Overlap of a Supersonic Impulse Turbine to Improve the Performance (초음속 충동형 터빈 성능개선을 위한 동익 오버랩 최적설계)

  • Cho, Jong-Jae;Seo, Jong-Chul;Kim, Kui-Soon
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.325-330
    • /
    • 2011
  • A rotor overlap technique was adapted to improve the performance of a axial turbine. The technique secured sufficient flow passage by additional height at the rotor tip and hub. especially in a supersonic turbine, the technique reduced the chance of chocking in the rotor passage, and made to be satisfied the design pressure ratio. However, the technique also made additional losses, like a pumping loss, expansion loss, etc. Therefore, a optimization technique was appled to maximize the improvement of the turbine performance. An approximate optimization method was used for the investigation to secure the computational efficiency. The design variables was shape factors of a rotor overlap. Results indicated that a significant improvement in turbine performance can be achieved through the optimization of the rotor overlap.

  • PDF

A Study on Integrated OWC System within Turbine Effects

  • Liu, Zhen;Hyun, Beom-Soo;Hong, Key-Yong;Lee, Young-Yeon;Jin, Ji-Yuan
    • Journal of Ocean Engineering and Technology
    • /
    • v.24 no.2
    • /
    • pp.1-9
    • /
    • 2010
  • Oscillating Water Column is one of the most widely used converting systems all over the world. The operating performance is influenced by the efficiencies of the two converting stages in the OWC chamber-turbine integrated system. In order to study the effects of the pressure drop induced by the air turbine, the experiments using the impulse turbine and the orifice device are carried out in the wave simulator test rig. The numerical simulation utilizing the orifice and porous media modules is calculated and validated by the corresponding experimental data. The numerical wave tank based on the two-phase VOF model embedded with the above modules is employed to investigate the wave elevation, pressure variation inside the chamber and the air flow velocity in the duct. The effects of the air turbine on the integrated system and interaction among the wave elevation, pressure and air flow velocities variations are investigated, which demonstrates that the present numerical model are more accurate to be employed.