• Title/Summary/Keyword: Impulse Pressure

Search Result 337, Processing Time 0.027 seconds

Computational and Analytical Studies on the Impulse Wave Discharged from the Exit of a Pipe (관출구로부터 방출하는 펄스파에 대한 수치계산과 해석적 연구)

  • Lee, D.H.;Kim, H.S.;Kim, H.D.
    • Proceedings of the KSME Conference
    • /
    • 2001.11b
    • /
    • pp.432-437
    • /
    • 2001
  • A computational work of the impulse wave which is discharged from the open end of a pipe is compared to the Lighthill's aeroacoustics theory. The second-order total variation diminishing(TVD) scheme is employed to solve the axisymmetric, compressible, unsteady Euler equations. The relationship between the initial compressure wave form and the resulting impulse wave is characterized in terms of the peak pressure. The overpressure, pressure gradient and wavelength of the initial compression wave are changed to investigate the influence of the initial compressure wave form on the peak pressure of impulse wave. The results obtained show that for the initial compression wave of a large wavelength and small pressure gradient the peak pressure of the impulse wave depends upon the wavelength and pressure gradient of compression wave, but for the initial compression wave of a short wavelength and large pressure gradient the peak pressure of the impulse wave is almost constant regardless of the wavelength and pressure gradient of compression wave. The peak pressure of the impulse wave is increased with an increase in the overpressure of the initial compression wave. The results from the numerical analysis are well compared to the results from the aeroacoutics theory with a good agreement.

  • PDF

A Study on the Characteristics of the Impulse Wave Discharged from the Exit of a Pipe (관출구로부터 방출하는 펄스파 특성에 관한 연구)

  • 이동훈;김희동;이명호;박종호
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.12 no.1
    • /
    • pp.48-56
    • /
    • 2002
  • A computational work of the impulse wave which is discharged from the open end of a pipe is compared to the Lighthill\`s aeroacoustics theory. The second-order total variation diminishing(TVD) scheme is employed to solve the axisymmetric, compressible, unsteady Euler equations. The relationship between the initial compressure wave form and the resulting impulse wave is characterized in terms of the peak pressure. The overpressure, pressure gradient and wavelength of the initial compression wave are changed to investigate the influence of the initial compressure wave form on the peak pressure of impulse wave. The results obtained show that for the initial compression wave of a large wavelength and small pressure gradient the peak pressure of the impulse wave depends upon the wavelength and pressure gradient of compression wave, but for the initial compression wave of a short wavelength and large pressure gradient the peak pressure of the impulse wave is almost constant regardless of the wavelength and pressure gradient of compression wave. The peak pressure of the impulse wave is increased with an increase in the overpressure of the initial compression wave. The results from the numerical ana1ysis are well compared to the results from the aeroacoutics theory with a food agreement.

The influence of load pulse shape on pressure-impulse diagrams of one-way RC slabs

  • Wang, Wei;Zhang, Duo;Lu, Fangyun
    • Structural Engineering and Mechanics
    • /
    • v.42 no.3
    • /
    • pp.363-381
    • /
    • 2012
  • This study is aimed at providing an efficient analytical model to obtain pressure- impulse diagram of one-way reinforced concrete slabs subjected to different shapes of air blast loading using single degree of freedom method (SDOF). A tri-linear elastic perfectly plastic SDOF model has been used to obtain the pressure-impulse diagram to correlate the blast pressure and the corresponding concrete flexural damage. In order to capture the response history for the slab, a new approximately SDOF method based on the conventional SDOF method is proposed and validated using published test data. The influences of pulse loading shape on the pressure-impulse diagram are studied. Based on the results, a pressure-impulse diagram generation method using SDOF and an analytical equation for the pressure-impulse diagram is proposed to different damage levels and different blast loading shapes.

Comparison of Plantar Foot Pressure and Impulse in Various Shoe Types (여러타입의 신발에 대한 족저압력과 임펄스의 비교분석)

  • An Eun-Soo;EOM Gwang-moon;Lee Soon-Hyuk
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.8 s.173
    • /
    • pp.174-181
    • /
    • 2005
  • We analyzed the pressure, impulse on 24 sensors location under the foot using the Parolee system. Total 7 kinds of shoes, i.e. sport shoe, high heel shoes (5cm heel, 8cm heel, 13cm heel), platform shoe, inline skate, and heelys were evaluated for 20 normal subjects. Compared with those of sport shoe, greater pressure and impulse were shown on the 1 st phalange and the 1 st metatarsal head and greater impulse on the medial tarsal bone in high-heel shoes. Greater pressure and impulse were shown on medial metatarsal bone and the lateral tarsal bone in platform shoe. Greater impulse was shown on the medial tarsal bone in inline-skate. Heelys shoe showed smaller impulse on the central area of foot. The result of this study is expected to provide useful information about the relationship between the shoe type and the foot pathologies.

Effect of Combustion Chamber Pressure to Specific Impulse of Liquid Rocket Engine (액체로켓엔진에서 연소압이 비추력에 미치는 영향)

  • Cho, Won-Kook;Park, Soon-Young;Seol, Woo-Seok
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.3154-3158
    • /
    • 2008
  • A liquid rocket engine performance has been analyzed as a function of combustion pressure with LOx/RP-1R. The present method is verified by comparing the specific impulse for various combustion pressure with given pump head model. The optimal combustion pressure is between 150 bar and 200 bar for given efficiencies. Both the optimal combustion pressure and the specific impulse increase for increased turbine efficiency. The optimal combustion pressure decreases and the specific impulse increases for increased combustion efficiency. The pump efficiency and the turbine inlet temperature have the same qualitative effect as the turbine efficiency.

  • PDF

High-pressure Air Impulse Technique for Rehabilitating Well and Its Application to a Riverbank Filtration Site in Korea

  • Jeon, Hang-Tak;Hamm, Se-Yeong;Cheong, Jae-Yeol;Han, Suk-Jong;Yun, Sul-Min
    • Journal of Environmental Science International
    • /
    • v.28 no.10
    • /
    • pp.887-898
    • /
    • 2019
  • Rehabilitation work is required to increase well productivity, which decreases with the elapsed time of pumping owing to the clogging of the water well. Clogging causes not only a reduction in the well productivity but also a deterioration of the water quality. For unclogging and rehabilitating wells, several techniques are used such as brushing, air surging, surge blocks, and gas impulse. In this study, the high-pressure air impulse technique, which effectively and economically rehabilitates wells, was applied to a riverbank filtration site in Korea for the same objective. At most of the wells, the hydraulic parameters (transmissivity, storage coefficient, and specific capacity) were increased by the application of the high-pressure air impulse technique. The well loss change values also indicate an increase in the hydraulic parameters by the air impulse implementation. Thus, the high-pressure air impulse technique can be efficiently and economically applied to water and riverbank filtration wells for rehabilitating the decreased productivity.

Evaluation of Similitude Laws for Dissipation Velocity of Excess Pore Pressure after Liquefaction using Impulse Load Tests (충격하중시험을 이용한 액상화 후 과잉간극수압 소산속도의 상사비 연구)

  • Kim, Dong-Hwi;Ha, Ik-Soo;Hwang, Jae-Ik;Kim, Myoung-Mo
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2004.03b
    • /
    • pp.714-721
    • /
    • 2004
  • The purpose of this study is to find out the similitude laws for dissipation velocity of excess pore pressure after liquefaction according to magnitude of input accelerations and height of model soils from the results of impulse load tests. In impulse load tests, model soils were constructed to the height of 25cm, 50cm, and 100cm in acrylic tubes whose inside diameters were 19cm and 38cm respectively, and impulse loads were applied at the bottom of each model soil to liquefy the entire model soil. Excess pore pressure distribution by depth and settlement of soil surface were measured in each test. Dissipation curves of excess pore pressure measured in each tests were simulated by solidification theory, and dissipation velocities of excess pore pressure were determined from the slope of simulated dissipation curves. From the results of impulse load tests, dissipation velocity of excess pore pressure was not affected by magnitude of input acceleration, and from this fact, dissipation process was proved to be different from dynamic phenomenon. However, dissipation velocity of excess pore pressure increased as height of model soil increased and showed little difference as diameter of model soil increased. Therefore, the similitude law for dissipation velocity could be expressed by the similitude law for model height to 0.2 without regard to the diameter of model soil.

  • PDF

Turbine Performance Experiments for the Turbopump of a Liquid Rocket Engine

  • Lee, Hanggi;Shin, Juhyun;Jeong, Eunhwan;Choi, Changho
    • International Journal of Aerospace System Engineering
    • /
    • v.3 no.1
    • /
    • pp.25-29
    • /
    • 2016
  • This paper highlights the performance of an impulse turbine which is a part of turbopump in a liquid rocket first stage engine. The turbopump, currently under development at Korea Aerospace Research Institute, has an impulse type turbine with 12 nozzles and a single rotor. The impulse turbine can archive high specific power with the low gas flow rates. The supersonic impulse turbine with a single rotor can make a simple structure. High-pressure gases are converted into the dynamic energy with flows through the 12 nozzles and drive the rotor to make the power for the pumps. The turbine test was performed in the high-pressured turbine test facility with air gas instead of burned gas. A hydraulic dynamometer was used to absorb the power from the turbine and control the rotational speed and torque. The test points were at several pressure ratios with 7 different rotational speeds. Results showed the efficiency was highest at the design pressure ratio. The efficiency was insensitive to the pressure ratio variation than the rotational speed. It was a typical characteristic in an impulse turbine.

A Study of Response Characteristics for the Interior Impulse Noise based on Interpreted Models (해석 모델 기반의 실내 충격소음 응답특성에 관한 연구)

  • Song, Kee-Hyeok;Chung, Sung-Hak
    • Journal of the Korean Society of Safety
    • /
    • v.29 no.5
    • /
    • pp.22-28
    • /
    • 2014
  • This study is compare to model-based analysis and experimental data of the response characteristic of interior impulse noise. Interior impulse noise and the pressure response characteristics of the building structure on its analysis are presented the impulse pressure acting on the rear wall 90 N-sec. The force acting on the wall $CFD^{{+}{+}}$ which are compared measurement and simulation analysis. Results of simulation and measurement data were shown. In this study, a high dimension of the degree of virtual space in the numerical space of the lesser degree in order to calculate folding method was applied. The results of this study contribute safety evaluation and model development for the interior impulse noise that affects the basic data for the interior impulse noise model validate for the physical quantity prediction.

Passive Control of the Impulse Wave Using a Helical Vane (Helical Vane 을 이용한 펄스파의 피동제어)

  • Yang, Soo-Young;Lee, Dong-Hoon;Kim, Heuy-Dong;Setoguchi, Toshiaki
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.792-797
    • /
    • 2003
  • A helical vane is applied to reduce the magnitude of the impulse wave discharged from the exit of a duct. A shock tube with an open end is used to investigate the effect of the helical vanes on the impulse wave magnitude. Four different types of helical vanes are installed into the low-pressure tube of shock tube. The magnitude of the incident shock wave is varied below 1.25, and the magnitude of impulse wave is measured using a pressure transducer mounted on a wedge probe. Instant images of the impulse wave are obtained by means of the Schlieren optical method. The present experimental results show that the helical vane considerably reduces the magnitude of the impulse wave and the vane effects are more remarkable for stronger incident shock wave.

  • PDF