• Title/Summary/Keyword: Impulse, Muscle

Search Result 26, Processing Time 0.024 seconds

Biomechanical Analysis on Kinematic Chains Type of Trunk (체간의 운동연쇄 형태에 따른 운동역학적 분석)

  • Han, Je-Hee;Woo, Byung-Hoon
    • Korean Journal of Applied Biomechanics
    • /
    • v.20 no.3
    • /
    • pp.277-284
    • /
    • 2010
  • The purpose of this study was to investigate the trunk rotation type by wheel and axle. In order to analysis, 3D-motion analysis and electromyography were conducted on kinematic variables, impulse, average-EMG and integrated-EMG. Twelve healthy (age: $21.8{\pm}2.2$ yrs, height: $175.4{\pm}5.0cm$, weight: $66.7{\pm}6.4kg$) participated in the experiment. The results were as follows; in hand's velocity and acceleration, wheel and axial rotating movement using kinematic chain(type 3) were much faster. In impulse, type 3 was much stronger. In average-EMG, right and left, latissimus dorsi muscles was much stronger. In integrated-EMG, left erector spinae, right/left latissimus dorsi, and left external oblique muscles was much stronger. These results considered that, in the trunk rotation utilizing the kinematic chains action, latissimus dorsi muscles highly contribute to the muscle utilization that makes the rotating movement maximally effective.

Time delay estimation algorithm for measurement of muscle fiber conduction velocity (근섬유 전도 속도 측정을 위한 시지연 추정 알고리즘)

  • Jung, Jung-Gyun;Lee, Jin;Lee, Young-Seok;Kim, Deok-Young;Kim, Sung-Hwan
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.1635-1638
    • /
    • 1997
  • A measurement of conduction veloctiy of the action potentials along the muscle fibres has been applied to various diagnosis. When we measure muscle fiber conduction velocity, it occurs that not only change of conduction velocity but alos inclusion of mipulse component by physiological and experimental reason. So, robuster time delay estimation algorithm than general methods[1] is needed to find correct time delay form these signals. In this paper we, propose new time delay estimation algorithms, robust in impulsive noise, by using characteristic of .alpha.-stable distribution whcih defines impulsive noise well. Then we apply proposed algorthms to measure muscle fiber conduction velocity and compare them with other studies.

  • PDF

Relationship of the Signal Transduction-mediated Proteins and Enzymes to Contractility and Plasticity in Skeletal Muscles (골격근의 수축과 가소성에 대한 신호전달-매개 단백질 및 관련 효소의 상관성)

  • Kim, Jung-Hwan
    • The Journal of Korean Physical Therapy
    • /
    • v.19 no.4
    • /
    • pp.1-14
    • /
    • 2007
  • Background: It is generally accepted that skeletal muscle contraction is triggered by nerve impulse and intracellular $Ca^{2+}\;([Ca^{2+}]_i)$ released from intracellular $Ca^{2+}$ stores such as sarcoplasmic reticulum (SR). Specifically, this process, called excitation-contraction (E-C) coupling, takes place at intracellular junctions between the plasma membrane, the transverse (T) tubule L-type $Ca^{2+}$ channel (dihydropyridine-sensitive L-rype $Ca^{2+}$ channel, DHPR, also called tetrads), and the SR $Ca^{2+}$ release channel (ryanodine-sensitive $Ca^{2+}$ release channel, RyR, also called feet) of internal $Ca^{2+}$ stores in skeletal muscle cells. Furthermore, it has been reported that the $Ca^{2+-}$ dependent and -independent contraction determine the expression of skeletal muscle genes, thus providing a mechanism for tightly coupling the extent of muscle contraction to regulation of muscle plasticity-related excitation-transcription (E-T) coupling. Purpose: Expression and activity of plasticity-associated enzymes in gastrocnemius muscle strips have not been well studied, however. Methods: Therefore, in this study the expression and phosphorylation of E-C and E-T coupling-related mediators such as protein kinases, ROS(reactive oxygen species)- and apoptosis-related substances, and others in gastrocnemius muscles from rats was examined. Results: I found that expression and activity of MAPKs (mitogen-activated protein kinases, ERK1/2, p38MAPK, and SAPK/JNK), apoptotic proteins (cleaved caspase-3, cytochrome c, Ref-1, Bad), small GTP-binding proteins (RhoA and Cdc42), actin-binding protein (cofilin), PKC (protein kinase C) and $Ca^{2+}$ channel (transient receptor potential channel 6, TRPC6) was observed in rat gastrocnemius muscle strips. Conclusion: These results suggest that MAPKs, ROS- and apoptosis-related enzymes, cytoskeleton-regulated proteins, and $Ca^{2+}$ channel may in part functionally import in E-C and E-T coupling from rat skeletal muscles.

  • PDF

User Recognition Method using Human Body Impulse Response Signals (인체의 임펄스 응답 신호를 이용한 사용자 인식 방법)

  • Park, Beom-Su;Kang, Eun-Jung;Kang, Taewook;Lee, Jae-Jin;Kim, Seong-Eun
    • Journal of IKEEE
    • /
    • v.24 no.1
    • /
    • pp.120-126
    • /
    • 2020
  • We present a user recognition method using human body impulse response signals. The body compositions vary from person to person depending on the portion of water, muscle, and fat. In the body communication study, the body has been interpreted circuit models using capacitance and resistances, and its characteristics are determined by the body compositions. Therefore, the individual body channel is unique and can be used for user recognition. In this paper, we applied pseudo impulse signals to the left hand and recorded received signals from the right hand. The empirical mode decomposition (EMD) method removed noise from the received signals and 10 peak values are extracted. We set the differences between peak amplitudes as a key feature to identify individuals. We collected data from 6 subjects and achieved accuracy of 97.71% for the user recognition application.

Effects of Differential Stability on Control of Multi-Joint Coordination in the Upper Extremity: A Torque Component Analysis

  • Ryu, Young Uk;Shin, Hwa Kyung
    • The Journal of Korean Physical Therapy
    • /
    • v.28 no.1
    • /
    • pp.8-13
    • /
    • 2016
  • Purpose: The purpose of the present current study was to examine control of upper limb multi-joint movements with differential coordination stability. To achieve the goals of the study, torque analyses were utilized to answer questions about how torque components were differed among various elbow-wrist coordination patterns. Methods: Eight self-reported right-handed college students (3 males and 5 females, mean age=20.6 yr) were volunteered. The task required participants to rhythmically coordinate the flexion-extension motions of their elbow and wrist with coordination relationship of $0^{\circ}$, $90^{\circ}$, and $180^{\circ}$relative phases between the two joints. Mean relative phase and phase stability (standard deviation of relative phase) were computed to for analysisze of overall coordination performance. To determine the figure out characteristics of torque components in elbow and wrist joints, impulse values of muscle torque (MT) and interactive torque (IT) and MT as a percentage of cycle duration (MT-PCD) were analyzed. Results: Torque results showed that the proximal elbow joint generated motions with mainly muscle efforts regardless of coordination patterns, while the distal wrist joint adjusted the coordination patterns by changing amount of MT. Impulse analyses showed that the least stable $90^{\circ}$ pattern was performed by utilizing a similar coordination strategy of the most stable $0^{\circ}$ pattern. Conclusion: The present current study suggests that the roles of distal and proximal joints differ in order to achieve various multi-joint coordination movements. This study provides information for use in gives an idea to development of rehabilitation or training programs for to persons with an impaired upper limb motor ability.

Facial reanimation with masseter nerve-innervated free gracilis muscle transfer in established facial palsy patients

  • Oh, Tae Suk;Kim, Hyung Bae;Choi, Jong Woo;Jeong, Woo Shik
    • Archives of Plastic Surgery
    • /
    • v.46 no.2
    • /
    • pp.122-128
    • /
    • 2019
  • Background The masseter nerve is a useful donor nerve for reconstruction in patients with established facial palsy, with numerous advantages including low morbidity, a strong motor impulse, high reliability, and fast reinnervation. In this study, we assessed the results of masseter nerve-innervated free gracilis muscle transfer in established facial palsy patients. Methods Ten patients with facial palsy who received treatment from January 2015 to January 2017 were enrolled in this study. Three patients received masseter nerve-only free gracilis transfer, and seven received double-innervated free gracilis transfer (masseter nerve and a cross-face nerve graft). Patients were evaluated using the Facial Assessment by Computer Evaluation software (FACEgram) to quantify oral commissure excursion and symmetry at rest and when smiling after muscle transfer. Results The mean time between surgery and initial movement was roughly 167.7 days. A statistically significant increase in excursion at rest and when smiling was seen after muscle transfer. There was a significant increase in the distance of oral commissure excursion at rest and when smiling. A statistically significant increase was observed in symmetry when smiling. Terzis' functional and aesthetic grading scores showed significant improvements postoperatively. Conclusions Masseter nerve innervation is a good option with many uses in in established facial palsy patients. For some conditions, it is the first-line treatment. Free gracilis muscle transfer using the masseter nerve has excellent results with good symmetry and an effective degree of recovery.

Effect Verification of Wearable Assisting Wear for Increasing Golf Carry Distance (골프 비거리 증가를 위한 기능성 보조 웨어의 효과 검증)

  • Park, Yang-Sun;Woo, Byung-Hoon;Lim, Young-Tae
    • Korean Journal of Applied Biomechanics
    • /
    • v.22 no.4
    • /
    • pp.421-428
    • /
    • 2012
  • The purpose of this study was to verify the effects of developed assisting wear which maximize trunk(back) muscle's stretch-shortening effect during backswing and downswing for increasing golf ball carrying distance. Design and fabrication of assistive wear were performed based on the results of analyzed data of trunk EMG activity from the golf drive swings of elite professional male golfers during back swing and downswing phases. After the prototype of wear was produced, surface EMG and Flight scope tests were conducted to verify the effectiveness of the wear for increasing distance to the professional golfers. Results indicated that wearing trial showed significant longer carry distance than the non-wearing trial(p<.001). The carry distance of wearing trial showed an average 229 m compared to the non-wearing trial, the average 225 m. The swing with wearing also produced significantly faster ball speed than the trial without wearing(p<.05). Average 245 Km/h and 244 Km/h were produced for the swing with and without wearing trails, respectively. EMG results also indicated that the muscle activity of left psoas was significantly increased for wearing trial during downswing and near the impact. Thus, this may affect positively to increase club head speed. The activity of the left latissimus dorsi was dramatically increased during the final stage of swing. This generates elongation effect for longer follow-through and increased impulse between club and ball so eventually valid assistance to increase carry distance. Therefore, the developed assisting wear was proved to be effective tool for increasing golf ball carry distance with maximizing trunk(back) muscle's stretch-shortening effect during backswing and downswing.

Comparison of Digital Filters with Wavelet Multiresolution Filter for Electrogastrogram (위전도 신호처리를 위한 웨이브렌 필터와 디지털 필터의 비교)

  • 유창용;남기창;김수찬;김덕원
    • Journal of Biomedical Engineering Research
    • /
    • v.23 no.2
    • /
    • pp.109-117
    • /
    • 2002
  • Electrogastrography(EGG) is a noninvasive method for measuring gastric electrical activity on the abdomen resulting from gastric muscle. EGG signals have a very low frequency range (0.0083 ~0.15 Hz) and extremely low amplitude(10~100 uV). Consequently, EGG signal is easily influenced by other noises. Both finite impulse response(FIR) and infinite impulse response (IIR) filters need high orders or have phase distortions for passing very narrow bandwidth of the EGG signal. In this study, we decomposed EGG signals using a wavelet multiresolution method with Daubechies mother wavelet. The EGG signals were decomposed to seven levels. We reconstructed signal by summing the decomposed signals from level four to seven. To evaluate the performance of the wavelet multiresolution filter(WMF) with simulated EGG signal using two kinds of FIR and four kinds of IIR filters., we used two indices; signal to noise ratio(SNR) and reconstruction squared error(RSE). The SNR of WMF had 9.5, 6.9, and 4.7 dB bigger than that of the other filters at different noise levels, respectively. Also, The RSE of WMF had $1.22{\times}10^6, 1.16{\times}10^6, 1.02{\times}10^6$ smaller than that of the other filters at different noise levels, respectively. The WMF performed better in the SNR and RSE than two kinds of FIR and four kinds of IIR filters.

The Biomechanical Analysis of Various Vertical Jumps According to Gender of High School Students (고등학생의 성별에 따른 수직점프 유형별 운동역학적 분석)

  • Lee, Haeng-Seob;Ju, Myung-Duck
    • Korean Journal of Applied Biomechanics
    • /
    • v.16 no.4
    • /
    • pp.153-164
    • /
    • 2006
  • This thesis is focused on kinematical and kinematical analysis of each types(Type #1 : use both swing of arm and reaction of knee, Type #2 : Use only swing of arm, not reaction of knee, type #3 : Neither use of swing of arm nor reaction of knee) of vertical jumps according to gender of High School Students. The subjects of this study is High School Student's male and female, 5 each, for analyzation of actions 3D image analyzing and GRF machines were used. To identify the differences of analyzed variables, an independent T-test on gender, an One-way ANOVA on types were used. Summery of the results are stated below. first of all, female students showed differences on Hip Joint angle and Joint Velocity from male students on Kimentic Variable. So training on hip joint force of flection and extension of female students is needed. Both male and female students showed relatively bigger result of arm's Angular Momentum than thigh's Angular Momentum on Type #1. This is regarded of faster Joint Velocity of Arm. Bigger result of female students of arm's contribution on Type #1 than male students can be said as Female student's weaker hip joint's angular muscle force than male student's, so the dependency of arm is heavier than male students. In Kinetic variable, GRF showed bigger result on male students than female students. So female students need to enhance joint's torque to increase GRF than male students. On vertical Impulse, high numeric data of last two reaction of tiptoe of vertical GRF and antero-posterior GRF helped increasing impulse by extending action time of force.

The Impact of Optical Illusions on the Vestibular System

  • Ozturk, Seyma Tugba;Serbetcioglu, Mustafa Bulent;Ersin, Kerem;Yilmaz, Oguz
    • Journal of Audiology & Otology
    • /
    • v.25 no.3
    • /
    • pp.152-158
    • /
    • 2021
  • Background and Objectives: Balance control is maintained in stationary and dynamic conditions, with coordinated muscle responses generated by somatosensory, vestibular, and visual inputs. This study aimed to investigate how the vestibular system is affected in the presence of an optical illusion to better understand the interconnected pathways of the visual and vestibular systems. Subjects and Methods: The study involved 54 young adults (27 males and 27 females) aged 18-25 years. The recruited participants were subjected to the cervical vestibular evoked myogenic potentials (cVEMP) test and video head impulse test (vHIT). The cVEMP and vHIT tests were performed once each in the absence and presence of an optical illusion. In addition, after each test, whether the individuals felt balanced was determined using a questionnaire. Results: cVEMP results in the presence of the optical illusion showed shortened latencies and increased amplitudes for the left side in comparison to the results in the absence of the optical illusion (p≤0.05). When vHIT results were compared, it was seen that the right lateral and bilateral anterior canal gains were increased, almost to 1.0 (p<0.05). Conclusions: It is thought that when the visual-vestibular inputs are incompatible with each other, the sensory reweighting mechanism is activated, and this mechanism strengthens the more reliable (vestibular) inputs, while suppressing the less reliable (visual) inputs. As long as the incompatible condition persists, the sensory reweighting mechanism will continue to operate, thanks to the feedback loop from the efferent vestibular system.