• 제목/요약/키워드: Improving the Performance

검색결과 6,313건 처리시간 0.035초

공공 정보지원 인프라 활용한 제조 중소기업의 특징과 성과에 관한 연구 (The Characteristics and Performances of Manufacturing SMEs that Utilize Public Information Support Infrastructure)

  • 김근환;권태훈;전승표
    • 지능정보연구
    • /
    • 제25권4호
    • /
    • pp.1-33
    • /
    • 2019
  • 제조 중소기업들은 지속적인 성장과 생존을 위해 새로운 제품 개발에 필요한 많은 정보가 필요할 뿐만 아니라 자원의 한계를 극복하기 위한 네트워킹(networking)을 추구하지만, 규모의 한계로 인해 한계점에 봉착하게 된다. 초연결성으로 인해 비즈니스 환경의 복잡성과 불확실성이 더욱 높아지는 새로운 시대에 중소기업은 신속한 정보 확보와 네트워킹 문제를 해결이 더욱 절실해지고 있다. 이러한 문제를 해결하기 위해 공공기관인 정부출연(연)구기관(이하 '출연(연)')은 중소기업의 정보 비대칭성 문제를 해결해야하는 중요한 임무와 역할을 맞이하고 있다. 본 연구에서는 비즈니스 인텔리젼스의 경쟁 지능화(competitive intelligence) 기능과 외부 네트워크 활성화를 위한 서비스 인프라(service infrastructure)의 기능을 포함한 공공 정보지원 인프라를 통한 간접지원의 성과를 확산하고자 하는 목적으로 출연(연)이 중소기업의 혁신역량 제고를 위해 제공하는 공공 정보지원 인프라를 활용하는 중소기업의 차별적 특징을 파악하고, 인프라가 기업의 성과에 어떻게 기여하는 가를 규명하고자 하였다. 이를 위해 첫째, 출연(연)이 제공한 정보지원 인프라를 활용하는 제조 중소기업은 다른 중소기업과 어떤 차별적인 특정이 있는가? 라는 연구 질의를 도출하였다. 추가적으로 단순히 선택적 편의 여부를 판단하는 것을 넘어서 출연(연) 정보지원 인프라를 활용한 제조 중소기업의 특징을 복수 집단의 특징과 비교하는 연구를 진행하였다. 둘째, 출연(연)이 제공하는 정보지원 인프라를 활용한 제조 중소기업의 외부 네트워킹 역량이 제품 경쟁력에 어떻게 기여했는가? 라는 연구 질의이다. 본 연구에서 공공 정보지원 인프라에 의해서 강화된 외부 네트워킹 역량이 어떻게 제품 경쟁력에 영향을 미쳤는지 정밀하게 분석하기 위해 복수의 변수에 대한 매개 및 조절 효과 분석을 수행하였다. 연구 모형을 도출하기하기 위해 첫째, 외부 네트워킹이 기술혁신성과에 영향력에 대한 평가를 수행하였다. 일반적으로 기업들은 외부 네트워킹(networking) 전략을 통해 혁신에 필요한 가치 있는 정보를 획득할 수 있기 때문에 기술혁신성과를 높일 수 있다. 정보 획득은 중소 제조기업 경영자의 혁신에 대한 인식을 강화할 뿐만아니라, 의사결정을 효율적으로 하여 경쟁력을 강화시킬 수 있게 된다. 대기업에 비해 인력과 자금의 규모 한계를 극복하기 위해 중소기업은 외부 조직과의 협력관계를 보다 적극적으로 추구한다. 둘째, 기술사업화 역량이 기술혁신성과에 미치는 관계에 대한 평가를 수행하였다. 기술사업화는 생산과 마케팅을 통합하여 새로운 기술을 만드는 역량을 말한다. 우수한 생산 역량을 보유한 기업은 소비자의 수요를 가격, 품질, 신기능 측면에서 신속하게 충족시킬 수 있어 시장내 경쟁우위를 창출하고, 그 결과로 높은 재무적 혁신적 성과를 가져온다고 본다. 혁신적인 기업은 생산 역량과 마케팅 역량에서 일반 기업보다 높은 성과를 나타내는데, 기술혁신성과의 대표 지표로 제품 경쟁력을 지목하고 있다. 마지막으로 기업의 규모가 작을수록 새로운 혁신 정보를 확보할 수 있는 자체 정보지원 인프라가 없는 경향이 있다. 중소기업용 정보인프라는 기업의 제품 또는 서비스 역량을 강화하기 위한 전략에 필요한 중요한 정보를 확보할 수 있어야 하며, 데이터에 대한 해석 기능이 있어야 하고, 기업의 성장과 발전을 위한 다양한 주제(대기업, 공급자, 소비자 등)와의 협력 전략을 수립을 도울 수 있는 기능이 요구된다. 종합하면, 연구모형은 외부 네트워킹 역량(독립변수)이 기술혁신성과인 제품 경쟁력(종속변수)에 영향을 주는 기본 모형에 기술사업화 역량을 매개요인으로 적용하였고, 이들의 관계에 기업의 내부역량(연구원 집중도, 매출액, 업력)이 영향을 줄 수 있기 때문에 기업의 내부역량과 관련된 변수들을 통제하였다. 또한 KISTI가 제공한 공공 정보지원 인프라 활용한 기업별 역량 차이를 분석하기 위해, 정보지원 인프라 활용(효율성)과 관련된 KISTI 외부 기술사업화 전문가(멘토링) 정보지원 횟수의 조절 변수로 고려하였다. 본 연구에서 활용한 데이터 원천은 2차 정보인 '제8차 중소기업 기술통계조사' 자료와 1차 정보인 KISTI의 직접 설문 자료다. '제8차 중소기업 기술통계조사' 는 중소기업청과 중소기업중앙회에서 공동으로 매년 실시되고 있으며, 설문 조사의 모집단은 종사자수 5인 이상 300인 미만인 제조업 및 제조업 외 기업 중에서 기술개발을 수행하고 있는 중소기업 43,204개사이다. 이 중에서 2014년 12월 31일 현재 기준으로 기술개발을 수행하고 있는 3,300개 중소기업을 표본추출하여 방문조사를 실시하여 수집한 자료이다. 본 연구에서 KISTI의 정보지원 인프라를 통해 지원받은 290개의 KISTI 패밀리 기업(ASTI)을 대상으로 2017년에 전자 메일을 통해 자료를 수집하였다. 송부된 290개의 설문지 중 222개의 기업에서 회신을 보내왔으며 그 중에서 설문 내용이 유효한 설문 조사는 149건으로 활용율은 51.3%였다. 분석 결과에 대한 살펴보면 다음과 같다. 규모면에서는 공공 정보지원 인프라 활용 제조 중소기업(ASTI 설문 집단)과 R&D 중소기업(KBIZ 설문 집단)의 성향은 통계적으로 유의미하게 차이가 있었지만, 보다 많은 변수를 종합적으로 보면 크게 다르지 않은 집단이라고 판단했다. 공공 정보지원 인프라를 활용하는 제조 중소기업은 이미 출연(연)과 협업이 가능한 집단을 대표하는 성향 보이는 것으로 나타났다. 외부 네트워킹 역량 강화가 제품 경쟁력 제고에 기여하는데 있어서 기술사업화 역량(마케팅 및 생산 역량)이 가지는 매개 효과의 가능성을 탐색하기 위해서 먼저 통제 변수는 고려하지 않고, Baron과 Kenny(1986)의 매개 효과 분석을 수행했다. 분석결과 외부 네트워크 역량 강화 효과가 제품 경쟁력을 강화시키는 것으로 보였지만, 실제는 기술사업화 역량의 제고를 통해 제품 경쟁력을 강화시키는 것으로 나타났다. 공공 정보지원 인프라 활용의 효과성을 판단하기 위한 멘토링 정보지원 횟수의 조절효과 분석을 위해 3단계의 위계적 회귀분석을 수행하였다. 분석 결과 외부 네트워킹 역량과 멘토링 정보지원 횟수의 상호작용항이 혁신성과(제품 경쟁력)에 유의한 영향을 미쳤을 뿐 아니라, 모델의 설명력도 증가하여, 멘토링 정보지원 횟수의 조절 효과가 검증되었다. 마지막으로 앞서 확인된 복수 매개효과와 조절효과가 동시에 나타날 수 있는 가능성을 판단하기 위해서 매개된 조절효과를 검토했다. 분석결과 외부 네트워킹 역량이 높아지면 제품 경쟁력 제고에 양의 영향을 주지만, 조절 변수인 멘토링 지원 횟수가 높아질수록 그 영향은 오히려 약화되었다. 그리고 외부 네트워킹 역량이 높아지면 사업화 역량(마케팅과 생산)이 높아져서 제품 경쟁력이 높아지며, 조절변수인 멘토링 지원 횟수가 높아지면 독립변수 외부 네트워킹 역량이 매개변수 생산 역량에 미치는 역량이 작아졌다. 종합하면, 외부 네트워킹 역량의 제고는 제품 경쟁력을 높이는데 기여하는데, 직접적 기여하지는 않지만 마케팅과 생산 역량을 높여 간접적으로 기여한다(완전 매개 효과). 또한 이 과정에서 멘토링의 정보적 지원 횟수는 외부 네트워킹 역량 제고가 생산 역량을 제고하는 매개효과에 영향을 준다(순수 조절 효과). 그러나 멘토링 정보 지원 횟수는 마케팅 역량 제고와 제품경쟁력에 별다른 조절 효과를 보이진 않는 것으로 나타났다. 연구를 통한 시사점은 다음과 같다. KISTI의 정보지원 인프라는 서비스 활용 마케팅이 이미 잘 진행되고 있다는 결론을 이끌 수도 있지만, 반면에 시장의 정보 불균형을 해소하는 공공적 기능보다는(열위 기업 지원) 성과가 잘 도출될 수 있는 집단을 지원해서(의도적 선택적 편의) 성과가 잘 나타나도록 관리하고 있다는 결론에 이를 수 있다. 연구 결과를 통해서 우리는 공공 정보지원 인프라가 어떻게 제품경쟁력 제고에 기여하는지 확인했는데, 여기서 우리는 다음과 같은 몇 가지 정책적 시사점을 도출할 수 있다. 첫째, 정보지원 인프라는 분석된 정보뿐만아니라 이 정보를 제공하는 기관(또는 전문가)과 지속적인 교류나 이런 기관을 찾는 역량을 높이는 기능이 있어야 한다. 둘째, 공공 정보지원 (온라인) 인프라의 활용이 효과적이라면 병행적인 오프라인 지원인 정보 멘토링이 지속적으로 제공될 필요는 없으며, 오히려 멘토링과 같은 오프라인 병행 지원은 성과 제고보다는 이상징후 감시에 적절한 장치로 활용되어야 한다. 셋째, 셋째, 공공 정보지원 인프라를 통한 네트워킹 역량 제고와 이를 통한 제품경쟁력 제고 효과는 특정 중소기업에서 나타나기 보다는 대부분 형태의 기업에서 나타나기 때문에, 중소기업이 활용 능력을 제고할 노력이 요구된다.

Hierarchical Attention Network를 이용한 복합 장애 발생 예측 시스템 개발 (Development of a complex failure prediction system using Hierarchical Attention Network)

  • 박영찬;안상준;김민태;김우주
    • 지능정보연구
    • /
    • 제26권4호
    • /
    • pp.127-148
    • /
    • 2020
  • 데이터 센터는 컴퓨터 시스템과 관련 구성요소를 수용하기 위한 물리적 환경시설로, 빅데이터, 인공지능 스마트 공장, 웨어러블, 스마트 홈 등 차세대 핵심 산업의 필수 기반기술이다. 특히, 클라우드 컴퓨팅의 성장으로 데이터 센터 인프라의 비례적 확장은 불가피하다. 이러한 데이터 센터 설비의 상태를 모니터링하는 것은 시스템을 유지, 관리하고 장애를 예방하기 위한 방법이다. 설비를 구성하는 일부 요소에 장애가 발생하는 경우 해당 장비뿐 아니라 연결된 다른 장비에도 영향을 미칠 수 있으며, 막대한 손해를 초래할 수 있다. 특히, IT 시설은 상호의존성에 의해 불규칙하고 원인을 알기 어렵다. 데이터 센터 내 장애를 예측하는 선행연구에서는, 장치들이 혼재된 상황임을 가정하지 않고 단일 서버를 단일 상태로 보고 장애를 예측했다. 이에 본 연구에서는, 서버 내부에서 발생하는 장애(Outage A)와 서버 외부에서 발생하는 장애(Outage B)로 데이터 센터 장애를 구분하고, 서버 내에서 발생하는 복합적인 장애 분석에 중점을 두었다. 서버 외부 장애는 전력, 냉각, 사용자 실수 등인데, 이와 같은 장애는 데이터 센터 설비 구축 초기 단계에서 예방이 가능했기 때문에 다양한 솔루션이 개발되고 있는 상황이다. 반면 서버 내 발생하는 장애는 원인 규명이 어려워 아직까지 적절한 예방이 이뤄지지 못하고 있다. 특히 서버 장애가 단일적으로 발생하지 않고, 다른 서버 장애의 원인이 되기도 하고, 다른 서버부터 장애의 원인이 되는 무언가를 받기도 하는 이유다. 즉, 기존 연구들은 서버들 간 영향을 주지 않는 단일 서버인 상태로 가정하고 장애를 분석했다면, 본 연구에서는 서버들 간 영향을 준다고 가정하고 장애 발생 상태를 분석했다. 데이터 센터 내 복합 장애 상황을 정의하기 위해, 데이터 센터 내 존재하는 각 장비별로 장애가 발생한 장애 이력 데이터를 활용했다. 본 연구에서 고려되는 장애는 Network Node Down, Server Down, Windows Activation Services Down, Database Management System Service Down으로 크게 4가지이다. 각 장비별로 발생되는 장애들을 시간 순으로 정렬하고, 특정 장비에서 장애가 발생하였을 때, 발생 시점으로부터 5분 내 특정 장비에서 장애가 발생하였다면 이를 동시에 장애가 발생하였다고 정의하였다. 이렇게 동시에 장애가 발생한 장비들에 대해서 Sequence를 구성한 후, 구성한 Sequence 내에서 동시에 자주 발생하는 장비 5개를 선정하였고, 선정된 장비들이 동시에 장애가 발생된 경우를 시각화를 통해 확인하였다. 장애 분석을 위해 수집된 서버 리소스 정보는 시계열 단위이며 흐름성을 가진다는 점에서 이전 상태를 통해 다음 상태를 예측할 수 있는 딥러닝 알고리즘인 LSTM(Long Short-term Memory)을 사용했다. 또한 단일 서버와 달리 복합장애는 서버별로 장애 발생에 끼치는 수준이 다르다는 점을 감안하여 Hierarchical Attention Network 딥러닝 모델 구조를 활용했다. 본 알고리즘은 장애에 끼치는 영향이 클 수록 해당 서버에 가중치를 주어 예측 정확도를 높이는 방법이다. 연구는 장애유형을 정의하고 분석 대상을 선정하는 것으로 시작하여, 첫 번째 실험에서는 동일한 수집 데이터에 대해 단일 서버 상태와 복합 서버 상태로 가정하고 비교분석하였다. 두 번째 실험은 서버의 임계치를 각각 최적화 하여 복합 서버 상태일 때의 예측 정확도를 향상시켰다. 단일 서버와 다중 서버로 각각 가정한 첫 번째 실험에서 단일 서버로 가정한 경우 실제 장애가 발생했음에도 불구하고 5개 서버 중 3개의 서버에서는 장애가 발생하지 않은것으로 예측했다. 그러나 다중 서버로 가정했을때에는 5개 서버 모두 장애가 발생한 것으로 예측했다. 실험 결과 서버 간 영향이 있을 것이라고 추측한 가설이 입증된 것이다. 연구결과 단일 서버로 가정했을 때 보다 다중 서버로 가정했을 때 예측 성능이 우수함을 확인했다. 특히 서버별 영향이 다를것으로 가정하고 Hierarchical Attention Network 알고리즘을 적용한 것이 분석 효과를 향상시키는 역할을 했다. 또한 각 서버마다 다른 임계치를 적용함으로써 예측 정확도를 향상시킬 수 있었다. 본 연구는 원인 규명이 어려운 장애를 과거 데이터를 통해 예측 가능하게 함을 보였고, 데이터 센터의 서버 내에서 발생하는 장애를 예측할 수 있는 모델을 제시했다. 본 연구결과를 활용하여 장애 발생을 사전에 방지할 수 있을 것으로 기대된다.

기업정보 기반 지능형 밸류체인 네트워크 시스템에 관한 연구 (A Study on Intelligent Value Chain Network System based on Firms' Information)

  • 성태응;김강회;문영수;이호신
    • 지능정보연구
    • /
    • 제24권3호
    • /
    • pp.67-88
    • /
    • 2018
  • 최근까지도 중소기업의 지속성장 및 경쟁력 확보에 대한 중요함을 인식함에 따라, 정부 차원에서의 유형 자원(R&D 인력, 자금 등)에 대한 지원이 주로 투입되어 왔다. 그러나 사업지원의 적절성이나 효과성, 효율성 면에서 서로 상충되는 정책부분이 존재하여 과소 지원이나 중복 지원 등 지원체계의 비효율성 문제가 제기되어온 것도 사실이다. 정부나 기업 관점에서는 중소기업의 한정된 자원으로 인해, 외부와의 협력을 통한 기술개발 및 역량강화가 기업의 경쟁우위를 창출하는 근간이라 보고 있으며, 이를 위한 가치창출 활동을 강조하고 있다. 기업 레벨에서의 지식생태계 구축을 통해 일련의 가치사슬로부터 기업거래 관계를 분석하고 결과를 가시화할 수 있는 밸류체인 네트워크 분석이 필요한 것도 이 때문이다. 특허/제품/기업명 검색을 통해 관련 제품의 정보나 특허 보유 기업의 기술(제품) 현황 정보를 제공하는 기술기회발굴시스템(Technology Opportunity Discovery system), 기업(재무)정보와 신용정보을 열람하게 해주는 CRETOP이나 KISLINE 등은 존재하고 있으나 밸류체인 네트워크 분석기반으로 유사(경쟁)기업의 리스트나 향후 거래 가능한 잠재 거래처 정보를 제공해주는 시스템은 부재한 실정이다. 따라서, 본 고에서는 KISTI에서 개발 운영중인 기업 비즈니스 전략수립 지원 파트너인 '밸류체인 네트워크 시스템(Value Chain Network System : VCNS)'을 중심으로, 탑재된 네트워크 기반 분석모듈의 유형, 이를 지원하는 참조정보 및 데이터베이스(D/B)의 구성 로직과 시스템 활용방안을 고찰하며, 산업구조를 이해하고 기업의 신제품 개발을 위한 핵심정보가 되고 있는 지능형 밸류체인 분석 시스템의 네트워크 가시화 기능을 살펴보기로 한다. 한 기업이 다른 기업 대비 경쟁우위를 확보하기 위해서는 보유 특허 또는 현재 생산하고 있는 제품에 대한 경쟁자 식별이 필요하며, 세부 업종별 유사(경쟁)기업을 탐색하는 일은 대상기업의 사업화 경쟁력 확보에 핵심이 된다. 또한 기업간 비즈니스 활동인 거래정보는 유사 분야로 진출할 경우 잠재 거래처 정보를 제공하는 중요한 역할을 수행한다. 이러한 기업간 판매정보를 기반으로 구축된 네트워크 맵을 활용하여 기업 또는 업종 수준의 경쟁자를 식별하는 일은 밸류체인 분석의 핵심모듈로 탑재될 수 있다. 밸류체인 네트워크 시스템(VCNS)은 단순 수집된 종래의 기업정보에 밸류체인(value chain) 및 산업구조 분석개념을 접목하여 개별 기업의 시장경쟁 상황은 물론 특정 산업의 가치사슬 관계를 파악할 수 있다. 특히 업종구조 파악, 경쟁사 동향 파악, 경쟁사 분석, 판매처 및 구매처 발굴, 품목별 산업동향, 유망 품목 발굴, 신규 진입기업 발굴, VC별 핵심기업 및 품목 도출, 해당 기업별 보유 특허 파악 등 기업 레벨에서의 유용한 정보분석 툴로 활용 가능하다. 또한, 거래처 정보 및 재무데이터로부터 분석된 결과의 객관성 및 신뢰성을 기반으로, 현재 국내에서 이용 중인 15,000여개 회원기업과 연구개발서비스업 종사자, 출연(연) 및 공공기관 등에서 사업평가 정보지원, R&D 의사결정 지원 및 중 단기 수요예측 전망 등 다양한 목적(용도)에 밸류체인 네트워크 시스템을 활용할 수 있을 것으로 기대된다. 기업의 사업경쟁력 강화를 위해 정부기관 및 민간 연구개발서비스 기업을 중심으로 기술(특허) 및 시장정보가 제공되어 왔으며, 이는 특허분석(등급, 계량분석 위주) 또는 시장분석(시장보고서 기반 시장규모 및 수요예측 위주)의 형태로 지원되어 왔다. 그러나 기업이 사업화진출 단계에서 겪게 되는 애로요인의 하나인 정보부족을 해결하는데 한계가 있었으며, 특히 경쟁기업 및 거래가능 기업 후보군에 대한 탐색정보는 입수하기 어려웠다. 본 연구를 통해 제안된 네트워크맵 및 보유 데이터 기반의 실시간 밸류체인 가시화 서비스모듈이 중견 중소기업이 당면한 신규시장 진출시 경쟁기업 대비 예상점유율, (예상)매출액 수준, 어느 기업을 컨택하여 유통망(원자재/부품에 대한 공급처, 완제품/모듈에 대한 수요처)을 확보할 지에 대한 핵심정보를 제공할 수 있을 것으로 기대된다. 향후 연구에서는 대체기업(또는 대체품목) 경쟁지표의 개발과 연구주체의 참여를 통한 경쟁요인별 지표의 고도화 연구, VCNS의 성능향상을 위한 데이터마이닝 기술 및 알고리즘을 추가 반영하도록 수행하고자 한다.