• Title/Summary/Keyword: Improvement of prediction performance

Search Result 440, Processing Time 0.026 seconds

On Performance Improvement of Adaptive Delta Modulation Using High-Order Prediction and Delayed-Decision (고차 예측기와 지연 결정을 이용한 ADM 부호화기의 성능 개선)

  • 조동호;은종관
    • The Journal of the Acoustical Society of Korea
    • /
    • v.9 no.6
    • /
    • pp.5-13
    • /
    • 1990
  • 본 논문에서는 16Kbps 및 32 Kbps 전송속도에서 ADM의 음질을 개선하기 위하여 두 가지 방 식을 적용한다. 첫째로, 고차 예측기 또는 적응 예측기를 ADM에 활용한다. ADM의 경우에 2차 또는 3 차 예측기를 사용하면 16Kbps 전송속도에서는 별로 개선이 없지만 32Kbps 전송속도에서는 SQNR\sub SEG\척도로 약 3-4dB의 상당한 이득이 얻어진다. 또한 ADM에 적응 예측기를 활용하면 최대 성능은 SZNR\sub SEG\ dir 2dB 정도 개선되지만 양자화 잡음의 축적 때문에 동작 범위가 매우 좁아진다. 둘 째로, 지연 결정 방식을 ADM에 이용한다. 지연 결정 방식을 2차 예측기를 갖고 있는 ADM에 적용하면 약 2dB 정도 개선되지만 양자화 잡음의 축적 때문에 동작 범위가 매우 좁아진다. 둘째로 지연 결정 방 식을 ADM 에 이용한다. 지연 결정 방식을 2차 예측기를 갖고 있는 ADM에 적용하면 1차 예측기를 갖 고 있는 ADMDP 적용했을 때 보다 16또는 32Kbps일 때 SQNR\sub SEG\척도로 재래의 ADM 보다 약 5dB 정도의 성능 개선이 얻어진다.

  • PDF

Leakage Signal Canceller and Adaptive Algorithm in Millimeter-Wave Seeker (밀리미터파 탐색기 내 누설신호 상쇄기 및 적응형 알고리즘에 관한 연구)

  • Park, Ji An;Song, Sung Chan
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.30 no.1
    • /
    • pp.88-94
    • /
    • 2019
  • A leakage canceller and adaptive algorithm for FMCW Radar is presented. Because a strong leakage signal causes various problems in the transceiver and digital processor, specific FMCW radars are in need of a leakage canceller. The leakage canceller has an adaptive structure and the algorithm calculates the prediction vector and learns the adaptive coefficient simultaneously. The proposed algorithm an improvement of 10 dB in the cancellation performance.

Improvement of multi layer perceptron performance using combination of gradient descent and harmony search for prediction of ground water level (지하수위 예측을 위한 경사하강법과 화음탐색법의 결합을 이용한 다층퍼셉트론 성능향상)

  • Lee, Won Jin;Lee, Eui Hoon
    • Journal of Korea Water Resources Association
    • /
    • v.55 no.11
    • /
    • pp.903-911
    • /
    • 2022
  • Groundwater, one of the resources for supplying water, fluctuates in water level due to various natural factors. Recently, research has been conducted to predict fluctuations in groundwater levels using Artificial Neural Network (ANN). Previously, among operators in ANN, Gradient Descent (GD)-based Optimizers were used as Optimizer that affect learning. GD-based Optimizers have disadvantages of initial correlation dependence and absence of solution comparison and storage structure. This study developed Gradient Descent combined with Harmony Search (GDHS), a new Optimizer that combined GD and Harmony Search (HS) to improve the shortcomings of GD-based Optimizers. To evaluate the performance of GDHS, groundwater level at Icheon Yullhyeon observation station were learned and predicted using Multi Layer Perceptron (MLP). Mean Squared Error (MSE) and Mean Absolute Error (MAE) were used to compare the performance of MLP using GD and GDHS. Comparing the learning results, GDHS had lower maximum, minimum, average and Standard Deviation (SD) of MSE than GD. Comparing the prediction results, GDHS was evaluated to have a lower error in all of the evaluation index than GD.

A Comparative study on smoothing techniques for performance improvement of LSTM learning model

  • Tae-Jin, Park;Gab-Sig, Sim
    • Journal of the Korea Society of Computer and Information
    • /
    • v.28 no.1
    • /
    • pp.17-26
    • /
    • 2023
  • In this paper, we propose a several smoothing techniques are compared and applied to increase the application of the LSTM-based learning model and its effectiveness. The applied smoothing technique is Savitky-Golay, exponential smoothing, and weighted moving average. Through this study, the LSTM algorithm with the Savitky-Golay filter applied in the preprocessing process showed significant best results in prediction performance than the result value shown when applying the LSTM model to Bitcoin data. To confirm the predictive performance results, the learning loss rate and verification loss rate according to the Savitzky-Golay LSTM model were compared with the case of LSTM used to remove complex factors from Bitcoin price prediction, and experimented with an average value of 20 times to increase its reliability. As a result, values of (3.0556, 0.00005) and (1.4659, 0.00002) could be obtained. As a result, since crypto-currencies such as Bitcoin have more volatility than stocks, noise was removed by applying the Savitzky-Golay in the data preprocessing process, and the data after preprocessing were obtained the most-significant to increase the Bitcoin prediction rate through LSTM neural network learning.

A Study on the Reliability Improvement of Guided Missile (유도탄의 신뢰성 향상 방안 고찰)

  • Kim, Bohyeon;Hwang, Kyeonghwan;Hur, Jangwook
    • Journal of Applied Reliability
    • /
    • v.16 no.3
    • /
    • pp.208-215
    • /
    • 2016
  • Purpose: ASRP for the domestic development guided missiles requires not only for the reliability evaluation of the products in storage but also for the life cycle management of the products including development prototypes and initial production items. Methods: For this purpose, it should be performed to build a performance database before and after the accelerated aging test with shelf life items including development prototypes and initial production items, based on which the lifetime prediction should also be carried out. In addition, HILS must be applied for the acceptance test with the initial and follow-up production items, and also for ASRP for the long-term storage products in order to secure systematic quality assurance. Results: The results for the life cycle reliability Improving of domestic development of guided missiles are DB building of prescription Item performance, active application of HILS, Management associated with guided missiles life cycle and to Secure technology data about the introduction of foreign guided missiles. Conclusion: Furthermore, it is demanded that DTaQ, the managing agency of ASRP, actively take part in the process to maintain reliability engagement consistency over the life cycle of guided missiles.

Modeling and Posture Control of Lower Limb Prosthesis Using Neural Networks

  • Lee, Ju-Won;Lee, Gun-Ki
    • Journal of information and communication convergence engineering
    • /
    • v.2 no.2
    • /
    • pp.110-115
    • /
    • 2004
  • The prosthesis of current commercialized apparatus has considerable problems, requiring improvement. Especially, LLP(Lower Limb Prosthesis)-related problems have improved, but it cannot provide normal walking because, mainly, the gait control of the LLP does not fit with patient's gait manner. To solve this problem, HCI((Human Computer Interaction) that adapts and controls LLP postures according to patient's gait manner more effectively is studied in this research. The proposed control technique has 2 steps: 1) the multilayer neural network forecasts angles of gait of LLP by using the angle of normal side of lower limbs; and 2) the adaptive neural controller manages the postures of the LLP based on the predicted joint angles. According to the experiment data, the prediction error of hip angles was 0.32[deg.], and the predicted error of knee angles was 0.12[deg.] for the estimated posture angles for the LLP. The performance data was obtained by applying the reference inputs of the LLP controller while walking. Accordingly, the control performance of the hip prosthesis improved by 80% due to the control postures of the LLP using the reference input when comparing with LQR controller.

Experimental and numerical assessment of helium bubble lift during natural circulation for passive molten salt fast reactor

  • Won Jun Choi;Jae Hyung Park;Juhyeong Lee;Jihun Im;Yunsik Cho;Yonghee Kim;Sung Joong Kim
    • Nuclear Engineering and Technology
    • /
    • v.56 no.3
    • /
    • pp.1002-1012
    • /
    • 2024
  • To remove insoluble fission products, which could possibly cause reactor instability and significantly reduce heat transfer efficiency from primary system of molten salt reactor, a helium bubbling method is employed into a passive molten salt fast reactor. In this regard, two-phase flow behavior of molten salt and helium bubbles was investigated experimentally because the helium bubbles highly affect the circulation performance of working fluid owing to an additional drag force. As the helium flow rate is controlled, the change of key thermal-hydraulic parameters was analyzed through a two-phase experiment. Simultaneously, to assess the applicability of numerical model for the analysis of two-phase flow behavior, the numerical calculation was performed using the OpenFOAM 9.0 code. The accuracy of the numerical analysis code was evaluated by comparing it with the experimental data. Generally, numerical results showed a good agreement with the experiment. However, at the high helium injection rates, the prediction capability for void fraction of helium bubbles was relatively low. This study suggests that the multiphaseEulerFoam solver in OpenFOAM code is effective for predicting the helium bubbling but there exists a room for further improvement by incorporating the appropriate drag flux model and the population balance equation.

Improvement of generalization of linear model through data augmentation based on Central Limit Theorem (데이터 증가를 통한 선형 모델의 일반화 성능 개량 (중심극한정리를 기반으로))

  • Hwang, Doohwan
    • Journal of Intelligence and Information Systems
    • /
    • v.28 no.2
    • /
    • pp.19-31
    • /
    • 2022
  • In Machine learning, we usually divide the entire data into training data and test data, train the model using training data, and use test data to determine the accuracy and generalization performance of the model. In the case of models with low generalization performance, the prediction accuracy of newly data is significantly reduced, and the model is said to be overfit. This study is about a method of generating training data based on central limit theorem and combining it with existed training data to increase normality and using this data to train models and increase generalization performance. To this, data were generated using sample mean and standard deviation for each feature of the data by utilizing the characteristic of central limit theorem, and new training data was constructed by combining them with existed training data. To determine the degree of increase in normality, the Kolmogorov-Smirnov normality test was conducted, and it was confirmed that the new training data showed increased normality compared to the existed data. Generalization performance was measured through differences in prediction accuracy for training data and test data. As a result of measuring the degree of increase in generalization performance by applying this to K-Nearest Neighbors (KNN), Logistic Regression, and Linear Discriminant Analysis (LDA), it was confirmed that generalization performance was improved for KNN, a non-parametric technique, and LDA, which assumes normality between model building.

Analysis of Input Factors and Performance Improvement of DNN PM2.5 Forecasting Model Using Layer-wise Relevance Propagation (계층 연관성 전파를 이용한 DNN PM2.5 예보모델의 입력인자 분석 및 성능개선)

  • Yu, SukHyun
    • Journal of Korea Multimedia Society
    • /
    • v.24 no.10
    • /
    • pp.1414-1424
    • /
    • 2021
  • In this paper, the importance of input factors of a DNN (Deep Neural Network) PM2.5 forecasting model using LRP(Layer-wise Relevance Propagation) is analyzed, and forecasting performance is improved. Input factor importance analysis is performed by dividing the learning data into time and PM2.5 concentration. As a result, in the low concentration patterns, the importance of weather factors such as temperature, atmospheric pressure, and solar radiation is high, and in the high concentration patterns, the importance of air quality factors such as PM2.5, CO, and NO2 is high. As a result of analysis by time, the importance of the measurement factors is high in the case of the forecast for the day, and the importance of the forecast factors increases in the forecast for tomorrow and the day after tomorrow. In addition, date, temperature, humidity, and atmospheric pressure all show high importance regardless of time and concentration. Based on the importance of these factors, the LRP_DNN prediction model is developed. As a result, the ACC(accuracy) and POD(probability of detection) are improved by up to 5%, and the FAR(false alarm rate) is improved by up to 9% compared to the previous DNN model.

A Novel on Auto Imputation and Analysis Prediction Model of Data Missing Scope based on Machine Learning (머신러닝기반의 데이터 결측 구간의 자동 보정 및 분석 예측 모델에 대한 연구)

  • Jung, Se-Hoon;Lee, Han-Sung;Kim, Jun-Yeong;Sim, Chun-Bo
    • Journal of Korea Multimedia Society
    • /
    • v.25 no.2
    • /
    • pp.257-268
    • /
    • 2022
  • When there is a missing value in the raw data, if ignore the missing values and proceed with the analysis, the accuracy decrease due to the decrease in the number of sample. The method of imputation and analyzing patterns and significant values can compensate for the problem of lower analysis quality and analysis accuracy as a result of bias rather than simply removing missing values. In this study, we proposed to study irregular data patterns and missing processing methods of data using machine learning techniques for the study of correction of missing values. we would like to propose a plan to replace the missing with data from a similar past point in time by finding the situation at the time when the missing data occurred. Unlike previous studies, data correction techniques present new algorithms using DNN and KNN-MLE techniques. As a result of the performance evaluation, the ANAE measurement value compared to the existing missing section correction algorithm confirmed a performance improvement of about 0.041 to 0.321.