Proceedings of the Korean Information Science Society Conference
/
2003.04d
/
pp.590-592
/
2003
본 논문에서는 대역폭 예약을 통한 무선 단말의 이동성 예측기법, 무선 단말의 이동 패턴을 이용한 이동성 예측기법과 무선 단말의 이동 패턴과 체류시간을 이용한 이동성 예측기법에 대하여 살펴본다. 대역폭 예약을 통한 이동성 예측기법에서의 자원 낭비 해결 방안과 이동 패턴 및 단말의 체류시간을 이용한 이동성 예측기법에서의 무선 단말의 셀에 장기간 체류시 대역폭의 낭비의 해결방안 그리고 이동성 예측 실패시 패킷손실을 없앨 수 있는 방안에 대해서 제안하였다.
Transactions of the Korean Society for Noise and Vibration Engineering
/
v.17
no.8
/
pp.708-719
/
2007
In case of indoor gymnastics training floor, in view of its characteristics, since it is simultaneously required the related smooth communication between the coach and the player, also the acoustic performance regarding to the clearness of music, besides the sport activity, the consideration about the acoustic character has entered the stage as an indispensable element. On such viewpoint, recently constructed dome-typed gymnastic training floor was optimized acoustic design with remodeling through acoustic simulation test. And acoustic satisfaction degree and reaction was attempted to investigate about the gymnastics training floor estimating value of human's psychological(sensual) degree using auralization that enables to experience the virtual sound field at the stage of design. As the result of investigation about the research on the space of object, it could be known that the valuation regarding to the acoustic performance of 'after-improvement' was distinctly more refined than that of 'before-improvement'. It is now considering that such result of the study can be utilized as the useful data which enables to improve the retrenchment effect of the construction cost as well as the acoustic capability, by means of the prediction control on the acoustic problem from the stage of design, for the occasion when the similar indoor sport gymnasium is planning to build for the near future.
VVC (Versatile Video Coding) is a new video compression technique that is being standardized, and it supports HD / UHD / 8K video, and High Dynamic Range (HDR) video with a goal of approximately 2 times higher coding efficiency than the conventional HEVC. It also aims to support a variety of functionalities such as screen content coding, adaptive resolution changes, and independent sub-pictures. In this paper, we investigate the signaling process of intra prediction mode first, and develop an effective coding method of the chroma intra prediction mode. In case of the DM mode, the proposed method simplifies the prediction mode of the chorma intra prediction mode when referring to the angular mode of the luminance block. It can improve coding efficiency of the chroma intra prediction mode, and the proposed process can also consider the size of the block in order to further improve its coding efficiency.
Postweaning performance data were obtained on 187 group fed purebred Angus calves from 12 selected sires (six high and six low feed conversion sires) in 1985 and 1986. The objective of this portion of the study was to develop prediction equations for feed conversion from a stepwise regression analysis. Variables measured were on-test weight (ONTSTWT), on-test age (ONTSTAG), five weights by 28-d periods, seven linear body measurements: heart girth (HG), hip height (HH), head width (HDW), head length (HDL), muzzle circumference (MC), length between hooks and pins (HOPIN) and length between shoulder and hooks (SHHO), and backfat thickness (BF). Stepwise regressions for maintenance adjusted feed conversion (ADJFC) and unadjusted feed conversion (UNADFC) over the first 140 d of the test, and total feed conversion (FC) until progeny reached 8.89 mm of back fat were obtained separately by conversion groups and sexes and for combined feed conversion groups and sexes. In general, weights were more important than linear body measurements in prediction of feed utilization. To some extent this was expected as weight is related directly to gain which is a component of feed conversion. Weight at 112 d was the most important variable in prediction of feed conversion when data from both feed conversion groups and sexes were combined. Weights at 84 and 140 d were important variables in prediction of UNADFC and FC, respectively, of bulls. ONTSTWT and weight at 140 d had the highest standardized partial regression coefficients for UNADFC and ADJFC, respectively, of heifers. Results indicated that linear measurements, such as MC, HDL and HOPIN, are useful in prediction of feed conversion when feed in takes are unavailable.
Journal of the Korea Society of Computer and Information
/
v.25
no.12
/
pp.165-172
/
2020
Recently, due to exponential growth of access information on the web, the importance of predicting a user's next web page use has been increasing. One of the methods that can be used for predicting user's next web page is deep learning. To predict next web page, web logs are analyzed by data preprocessing and then a user's next web page is predicted on the output of the analyzed web logs using a deep learning algorithm. In this paper, we propose a framework for web page prediction that includes methods for web log preprocessing followed by deep learning techniques for web prediction. To increase the speed of preprocessing of large web log, a Hadoop based MapReduce programming model is used. In addition, we present a web prediction system that uses an efficient deep learning technique on the output of web log preprocessing for training and prediction. Through experiment, we show the performance improvement of our proposed method over traditional methods. We also show the accuracy of our prediction.
Recommender system helps customers to find easily items and helps the e-biz companies to set easily their target customer by automated recommending process. Recommender systems are being adopted by several e-biz companies and from these systems, both of customers and companies take some benefits. This study sets several thresholds to the similarity weight, which indicates a degree of similarity of two customers' preference, to improve the performance of prediction accuracy. According to the threshold, the accuracy of prediction is being improved but some threshold setting shows the reduction of the prediction rate, which is the coverage. This coverage reduction has male effect on the prediction accuracy of customers, so more study on the prediction accuracy of recommender system and to maximize the coverage are needed.
Ensemble learning is a method for improving the performance of classification and prediction algorithms. It is a method for finding a highly accurateclassifier on the training set by constructing and combining an ensemble of weak classifiers, each of which needs only to be moderately accurate on the training set. Ensemble learning has received considerable attention from machine learning and artificial intelligence fields because of its remarkable performance improvement and flexible integration with the traditional learning algorithms such as decision tree (DT), neural networks (NN), and SVM, etc. In those researches, all of DT ensemble studies have demonstrated impressive improvements in the generalization behavior of DT, while NN and SVM ensemble studies have not shown remarkable performance as shown in DT ensembles. Recently, several works have reported that the performance of ensemble can be degraded where multiple classifiers of an ensemble are highly correlated with, and thereby result in multicollinearity problem, which leads to performance degradation of the ensemble. They have also proposed the differentiated learning strategies to cope with performance degradation problem. Hansen and Salamon (1990) insisted that it is necessary and sufficient for the performance enhancement of an ensemble that the ensemble should contain diverse classifiers. Breiman (1996) explored that ensemble learning can increase the performance of unstable learning algorithms, but does not show remarkable performance improvement on stable learning algorithms. Unstable learning algorithms such as decision tree learners are sensitive to the change of the training data, and thus small changes in the training data can yield large changes in the generated classifiers. Therefore, ensemble with unstable learning algorithms can guarantee some diversity among the classifiers. To the contrary, stable learning algorithms such as NN and SVM generate similar classifiers in spite of small changes of the training data, and thus the correlation among the resulting classifiers is very high. This high correlation results in multicollinearity problem, which leads to performance degradation of the ensemble. Kim,s work (2009) showedthe performance comparison in bankruptcy prediction on Korea firms using tradition prediction algorithms such as NN, DT, and SVM. It reports that stable learning algorithms such as NN and SVM have higher predictability than the unstable DT. Meanwhile, with respect to their ensemble learning, DT ensemble shows the more improved performance than NN and SVM ensemble. Further analysis with variance inflation factor (VIF) analysis empirically proves that performance degradation of ensemble is due to multicollinearity problem. It also proposes that optimization of ensemble is needed to cope with such a problem. This paper proposes a hybrid system for coverage optimization of NN ensemble (CO-NN) in order to improve the performance of NN ensemble. Coverage optimization is a technique of choosing a sub-ensemble from an original ensemble to guarantee the diversity of classifiers in coverage optimization process. CO-NN uses GA which has been widely used for various optimization problems to deal with the coverage optimization problem. The GA chromosomes for the coverage optimization are encoded into binary strings, each bit of which indicates individual classifier. The fitness function is defined as maximization of error reduction and a constraint of variance inflation factor (VIF), which is one of the generally used methods to measure multicollinearity, is added to insure the diversity of classifiers by removing high correlation among the classifiers. We use Microsoft Excel and the GAs software package called Evolver. Experiments on company failure prediction have shown that CO-NN is effectively applied in the stable performance enhancement of NNensembles through the choice of classifiers by considering the correlations of the ensemble. The classifiers which have the potential multicollinearity problem are removed by the coverage optimization process of CO-NN and thereby CO-NN has shown higher performance than a single NN classifier and NN ensemble at 1% significance level, and DT ensemble at 5% significance level. However, there remain further research issues. First, decision optimization process to find optimal combination function should be considered in further research. Secondly, various learning strategies to deal with data noise should be introduced in more advanced further researches in the future.
So, Yun-Sung;Cho, Hyun-Duck;Kim, Jong-Hyo;Ra, Jong-Beom
Journal of Biomedical Engineering Research
/
v.18
no.3
/
pp.223-231
/
1997
In this paper, an interframe coding method for volumetric medical images is proposed. By treating interslice variations as the motion of bones or tissues, we use the motion compensation (MC) technique to predict the current frame from the previous frame. Instead of a block matching algorithm (BMA), which is the most common motion estimation (ME) algorithm in video coding, image warping with biolinear transformation has been suggested to predict complex interslice object variation in medical images. When an object disappears between slices, however, warping prediction has poor performance. In order to overcome this drawback, an overlapped block motion compensation (OBMC) technique is combined with carping prediction. Motion compensated residual images are then encoded by using an embedded zerotree wavelet (EZW) coder with small modification for consistent quality of reconstructed images. The experimental results show that the interframe coding suing warping prediction provides better performance compared with interframe coding, and the OBMC scheme gives some additional improvement over the warping-only MC method.
In this investigation, Elman neural networks were utilized for predicting the mechanical properties of Self-Compacting Concretes (SCCs). Elman models were designed by using experimental data of many different concrete mixdesigns of various types of SCC that were collected from the literature. In order to investigate the effectiveness of the selected input variables on the network performance in predicting intended properties, utilized data in artificial neural networks were considered in two sets of 8 and 140 input variables. The obtained outcomes showed that not only can the developed Elman ANNs predict the mechanical properties of SCCs with high accuracy, but also for all of the desired outputs, networks with 140 inputs, compared to ones with 8, have a remarkable percent improvement in the obtained prediction results. The prediction accuracy can significantly be improved by using a more complete and accurate set of key factors affecting the desired outputs, as input variables, in the networks, which is leading to more similarity of the predicted results gained from networks to experimental results.
Transactions of the Korean Society of Automotive Engineers
/
v.9
no.5
/
pp.62-74
/
2001
In this study, the prediction of performances and emissions of the gasoline engine of a light passenger car has been accomplished. The method of characteristics including friction, heat transfer, area change and entropy gradients was used to analyze the flow in the intake and exhaust systems. For in-cylinder calculation, the single-zone model was adopted for the periods of the intake, exhaust, compression and the expansion of the burnt gas and the 2-zone expansion model was applied to the period of combustion process. The simulation program was verified by comparison with the experimental values both for the naturally aspirated engine and the turbocharged engine showing good agreements. Using the simulation program, multi-valve system and turbocharging were examined as a means of increasing engine Performances.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.