• Title/Summary/Keyword: Improvement devices

Search Result 1,311, Processing Time 0.029 seconds

A study on Improvement of $30{\AA}$ Ultra Thin Gate Oxide Quality (얇은 게이트 산화막 $30{\AA}$에 대한 박막특성 개선 연구)

  • Eom, Gum-Yong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.07a
    • /
    • pp.421-424
    • /
    • 2004
  • As the deep sub-micron devices are recently integrated high package density, novel process method for sub $0.1{\mu}m$ devices is required to get the superior thin gate oxide characteristics and reliability. However, few have reported on the electrical quality and reliability on the thin gate oxide. In this paper I will recommand a novel shallow trench isolation structure for thin gate oxide $30{\AA}$ of deep sub-micron devices. Different from using normal LOCOS technology, novel shallow trench isolation have a unique 'inverse narrow channel effects' when the channel width of the devices is scaled down shallow trench isolation has less encroachment into the active device area. Based on the research, I could confirm the successful fabrication of shallow trench isolation(STI) structure by the SEM, in addition to thermally stable silicide process was achiever. I also obtained the decrease threshold voltage value of the channel edge and the contact resistance of $13.2[\Omega/cont.]$ at $0.3{\times}0.3{\mu}m^2$. The reliability was measured from dielectric breakdown time, shallow trench isolation structure had tile stable value of $25[%]{\sim}90[%]$ more than 55[sec].

  • PDF

A study on elastomer coating technology for continuous gradient conductive surface (연속 구배형 전도성 표면 구현을 위한 탄성중합체 코팅에 관한 연구)

  • La, Moon-Woo;Yoon, Gil-Sang;Park, Sung-Jea
    • Design & Manufacturing
    • /
    • v.13 no.3
    • /
    • pp.1-11
    • /
    • 2019
  • Recently, studies on the development of flexible electronic devices by combining flexible materials and a conductor have been actively performed as interest in wearable devices. Especially, carbon nanotubes (CNT) or graphene coating have been used to construct a circuit to induce improvement in flexibility and rigidity. Various technologies have been developed in the surface coating of conductive materials, which are key to the manufacture of flexible electronic devices. Surface coating products with 3D coating and micro-patterns have been proposed through electrospinning, electrification, and 3D printing technologies. As a result of this advanced surface coating technology, there is a growing interest in manufacturing gradient conductive surfaces. Gradient surfaces have the advantage that they are adapted to apply a gentle change or to inspect optimum conditions in a particular region by imparting continuously changing properties. In this study, we propose a manufacturing technique to produce a continuous gradient conductive surface by combining a partial stretching of elastomer and a conductive material coating, and introduce experimental results to confirm its performance.

Communication Failure Resilient Improvement of Distributed Neural Network Partitioning and Inference Accuracy (통신 실패에 강인한 분산 뉴럴 네트워크 분할 및 추론 정확도 개선 기법)

  • Jeong, Jonghun;Yang, Hoeseok
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.16 no.1
    • /
    • pp.9-15
    • /
    • 2021
  • Recently, it is increasingly necessary to run high-end neural network applications with huge computation overhead on top of resource-constrained embedded systems, such as wearable devices. While the huge computational overhead can be alleviated by distributed neural networks running on multiple separate devices, existing distributed neural network techniques suffer from a large traffic between the devices; thus are very vulnerable to communication failures. These drawbacks make the distributed neural network techniques inapplicable to wearable devices, which are connected with each other through unstable and low data rate communication medium like human body communication. Therefore, in this paper, we propose a distributed neural network partitioning technique that is resilient to communication failures. Furthermore, we show that the proposed technique also improves the inference accuracy even in case of no communication failure, thanks to the improved network partitioning. We verify through comparative experiments with a real-life neural network application that the proposed technique outperforms the existing state-of-the-art distributed neural network technique in terms of accuracy and resiliency to communication failures.

Wearable and Implantable Sensors for Cardiovascular Monitoring: A Review

  • Jazba Asad;Jawwad Ibrahim
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.7
    • /
    • pp.171-185
    • /
    • 2023
  • The cardiovascular syndrome is the dominant reason for death and the number of deaths due to this syndrome has greatly increased recently. Regular cardiac monitoring is crucial in controlling heart parameters, particularly for initial examination and precautions. The quantity of cardiac patients is rising each day and it would increase the load of work for doctors/nurses in handling the patients' situation. Hence, it needed a solution that might benefit doctors/nurses in monitoring the improvement of the health condition of patients in real-time and likewise assure decreasing medical treatment expenses. Regular heart monitoring via wireless body area networks (WBANs) including implantable and wearable medical devices is contemplated as a life-changing technique for medical assistance. This article focuses on the latest development in wearable and implantable devices for cardiovascular monitoring. First, we go through the wearable devices for the electrocardiogram (ECG) monitoring. Then, we reviewed the implantable devices for Blood Pressure (BP) monitoring. Subsequently, the evaluation of leading wearable and implantable sensors for heart monitoring mentioned over the previous six years, the current article provides uncertain direction concerning the description of diagnostic effectiveness, thus intending on making discussion in the technical communal to permit aimed at the formation of well-designed techniques. The article is concluded by debating several technical issues in wearable and implantable technology and their possible potential solutions for conquering these challenges.

A Study on the Actual Condition and Utilization Plan of Smart Devices for Educational Purpose (스마트기기의 교육적 이용 실태 및 활용 방안 연구)

  • Gim, Yeongrok;Chung, Mihyun;Kim, Jaehyoun
    • Journal of Internet Computing and Services
    • /
    • v.14 no.3
    • /
    • pp.47-55
    • /
    • 2013
  • In recent years, smart devices have changed the paradigm of education. However, the educational environment and teaching methods could not catch up with this fast improvement and an utmost need for development of educational methods has been realized. In this paper, the general usage of smart devices by elementary school teachers is analyzed and the methods through which smart devices are utilizing smart learning is discussed in the result. A survey of 221 elementary school teachers in Gangwon Province showed that 87.7% of them are currently using smart devices. In addition, teachers were using smart devices with not much difference from ordinary people. The three main motives of teachers who were already using smart devices and those who were planning to take advantage of smart devices were innovativeness, usability and easiness. The reason of need to apply smart devices in education is because of its functionality in various learning types, courses and teaching-learning process methods. Although smart devices have a high efficacy in education but they are not widely utilized yet. In order to solve these problems and be able to take more advantage of smart devices in education, teachers should learn how to use smart devices and a strong sense of willingness is required to make changes in the educational methods. The results of this research on elementary school teachers can be further developed for a greater smart device based smart learning.

A Study on the Improvement of Trolling Equipment for Spanish Mackerel and Yellow Tail in the Coast of Jeju island (제주 연근해 삼치·방어용 끌낚시의 조업 장비 개발)

  • Park, Young-Seok;Kim, Byung-Yeob;Lee, Chang-Heon
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.27 no.2
    • /
    • pp.422-429
    • /
    • 2015
  • The purpose of this study is the improvement of the existing trolling hauler, which has only one wheel to wind a main line, for saving man power around the coast of Jeju island. The trolling hauler manufactured for a test performance consisted of the wheel part of a main line and the roller part of a leader line including labor-saving devices comprised of a friction clutch, a fastener and springs. Even though this existing electric hauler system is convenient to control the wheel speed and the winding direction, it is apt to cost high and to corrode quickly at sea. Therefore, to remove these negative elements and to operate rollers for hoisting a leader line of the trolling, hydraulic motors were used separately. As a result, according to using of labor-saving devices, the towing tension occurred in operating in fishing ground could be selected moderately without breaking of lines and the operating efficiency of the trolling hauler was verified.

A study on the improvement in the efficiency of blue phosphorescent organic light-emitting diodes (청색 인광물질을 이용한 유기 발광 다이오드의 효율개선에 관한 연구)

  • Yang, Mi-Youn;Kim, Jun-Ho;Ha, Yun-Kung;Kim, Young-Kwan
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.07b
    • /
    • pp.1070-1073
    • /
    • 2004
  • In this study, Tri(1-phenylpyrazolato)iridium $(Ir(ppz)_3)$ was prepared for the pure blue phosphorescent dopant and various host materials were used for the appropriate energy alignment. Although the luminance was pure blue with the CIE coordinates of x = 0.158, y = 0.139, device efficiencies didn't improve yet. Instead of finding the proper host materials, the alteration of structure of OLEDs affected the improvement of electrical and optical characteristics of the devices. It was worthy that insertion the exciton formation zone with the host material between the emitting zone and the exciton blocking layer. The device with a structure of ITO/NPB/Ir(ppz)3 doped in CBP/CBP for the exciton formation zone/BCP/Liq/Al was fabricated and the characteristics were observed compared with the devices without the exciton formation zone. When CBP was used for the exciton formation zone, the device efficiency reached to over 0.25 cd/A. While the device used CBP only for the host showed the luminous efficiency of under 0.11 cd/A

  • PDF

The effects of special metallic dampers on the seismic behavior of a vulnerable RC frame

  • Ozkaynak, Hasan
    • Structural Engineering and Mechanics
    • /
    • v.61 no.4
    • /
    • pp.483-496
    • /
    • 2017
  • Earthquake excitations may induce important amount of seismic energy into structures. Current design philosophy mainly deals with the plastic deformations of replaceable energy dissipating devices rather than damages accumulated on structural members. Since earthquake damage is substantially concentrated on these devices they could be replaced after severe earthquakes. In this study, the efficiency of steel cushion (SC) on seismic improvement of a vulnerable reinforced concrete (RC) frame is determined by means of several numerical simulations. The cyclic shear behaviors of SCs were determined by performing quasi-static tests. The test results were the main basis of the theoretical model of SCs which were used in the numerical analysis. These analyses were performed on three types of RC frames namely bare frame (BF), full-braced frame (F-BF) and semi-braced frame (S-BF). According to analysis results; implementation of SCs has considerable effects in reducing the storey shear forces and storey drifts. Moreover plastic energy demands of structural elements were reduced which indicates a significant improvement in seismic behavior of the RC frame preventing damage accumulation on structural elements. Full-braced frame having SCs with the thickness of 25 mm has better performance than semi-braced frame interms of energy dissipation. However, global energy dissipation demand of S-BF and F-BF having SCs with the thickness of 18 mm are almost similar.