한국 의료제도와 유전상담 서비스의 구축 (Genetic Counseling in Korean Health Care System)
-
- Journal of Genetic Medicine
- /
- 제8권2호
- /
- pp.89-99
- /
- 2011
유전상담이 왜 국내 의료 현장에서는 필요한 의료서비스로 제공되고 잇지 않은 지에 대한 문제점과 해결책을 모색하고자 미국과 일본에서 유전상담이 필요한 유전 의료 서비스의 일환으로 정착되는 배경과 과정을 비교 고찰하였다. 동시에 국내 유전의료서비스의 현황과 유전상담 서비스 제공에 있어서 장애가 되는 요인들을 고찰하였다. 미국의 경우에는 1970년대 초에 산전 진단이 보편화되면서 유전상담의 수요가 늘게 되어 새로운 직종의 전문 유전상담사를 양성하게 되는 계기가 되었으며, 현재 29개의 양성과정의 교육을 통해서 3,000명에 가까운 전문유전상담사가 배출되어 임상유전 의료팀의 일원으로 임상유전학 전문의의 감독 하에 유전상담을 제공하고 있으며, 21세기 유전의료시대에 요구되는 생명유전정보관리를 위해서 유전상담의 필요성과 그 역할이 확대되고 있다. 일본에서는 정부주도하에 HGP 유전체 연구사업 이후 21세기 유전의료시대의 도래를 준비하는 밀레니엄 프로젝트 차원에서 <유전의료시스템의 구축과 운영> 및 <유전 카운슬링 체제의 구축>을 위한 대규모의 연구단을 구성하여 임상유전 전문의의 제도화와 본격적인 임상유전 전문 분야의 서비스가 의료기관에 개설되는 동시에 비의사를 위한 인정 유전카운슬러의 양성과 자격에 대한 연구를 거쳐서 2003년 7개의 대학원에서 유전상담사 양성 과정이 인정되어 2012년까지 110명의 유전카운슬러 배출을 목표로 현재 100명이 넘는 유전상담사가 인증되었다. 사회적 의료 수요에 부응하는 의학유전 유관학회와 교육기관의 전문가 그룹이 선도한 미국의 유전상담사 양성 프로그램과 정부 주도 하의 시대적 의료 변화에 부응하는 연구에 전문가들의 참여로 체계적인 유전상담 프로그램개발을 정착시킨 일본의 경우, 모두 비의사 유전상담사에 의한 유전상담 서비스에 대한 보험급여 등의 제도적인 보완 없이 선행되었다는 점은 우리에게 시사하는 점이 크다고 본다. 한국의료 현장에서 유전상담 서비스가 시도되지 않는 주 장애요소로는 유전상담에 대한 이해 부족과 무관심, 국내 의료 제도 하에서 의사의 진료 수가가 너무 낮아서 그 결과 외래에서 한 환자의 진료에 할애할 수 있는 시간은 10분을 초가 할 수 없는데, 유전상담 서비스는 장시간이 소요되기 때문이다(최소30분이상). 또한, 건강보험 급여제도에서 '유전상담'을 필요한 의료 행위로 인정하지 않고 있어서 아직 code 조차 생성되어 있지 않기 때문이다. 또한, 무엇보다도 근본적인 요인으로 유전상담 서비스를 제공할 수 있는 임상유전 전문의가 절대 부족하고, 최근까지도 국내 의과대학 교육 curriculum에 유전상담을 실제적으로 이해하고 습득할 기회가 없었기 때문에 일반 의료인에게는 유전상담에 대한 이해 부족과 무관심 등이 유전상담 서비스의 걸림돌로 파악되었다. 그러나, 대한의학유전학회에서 2007년 전문가들을 대상으로 실시한 유전상담과 전문 유전상담사 수요에 대한 전국 조사 연구에서 유전의료 현장과 연구 부분에서 유전상담과 전문 유전상담사가 매우 필요하다는 것이 확인되었다. 또한, 정부는 희귀난치성질환센터 Help Line의 유전질환 정보 제공을 통해서 유전상담을 받을 것을 권고하고 있지만, 실제로 의료 현장에서는 유전상담이 제공되고 있지 않기 때문에, 한국근육장애인협회, 저신장장애인협회, 코헴회등, 유전성환자들로 구성된 국내 자조회 등에서는 유전상담의 필요성을 제기하며, 서비스를 요구해오고 있다. 최근 한국희귀질환재단에서 유전성 희귀질환 환자와 가족들에게 유전상담 교육 강좌를 제공한 후 설문조사에 응한 283명의 81%가 이전에 유전상담에 대해서 접해 본 적이 없었고, 96%에서 유전상담이 희귀난치성질환 환자에게 도움이 될 것이라고 응답했다. 한편, 2009년 실시한 국내 실정에 맞는 유전상담사 양성을 위한 교육 프로그램과 교육기관의 인정 및 전문 자격 인증제도 수립에 대한 연구에서 관련 업무 전문 종사자 총 117명(의사52명, 전문 연구원30명, 간호대학 교수 26명 포함) 중 설문조사에 응한 88%가 대한의학유전학회에서 주관하고 유전상담위원회를 구성하여 교육 프로그램 개발과 인증제도를 구체화 할 것을 촉구하였다. 전문 인력의 양성을 위한 교육 수련 및 인증 프로그램을 개발하고 수행하는 것은 전문학회의 역할인 동시에 "사회적책임"이라고 생각한다. 새로운 분야(신기술)의 전문 임상 인력을 양성하는 데는 시간이 걸리기 때문에(유전상담사의경우, 2년의 대학원 과정과1년의clerkship, 임상수련과정 등으로 적어도 3년) 대한의학유전학회에서는 전문 유전상담사 양성을 위한 선 교육, 후 제도적 보완을 추진하는 것이 바람직한 방향이다. UNESCO에서는 이미 1995년 Report에서 유전상담은 유전자 검사의 보급이 증가하고 있는(21세기 유전의료시대) 의료현장에서 가장 빠르게 성장하고 있는 전문 분야로서 유전정보와 기법을 환자 진료에 연결하는 것을 돕는다고 하였다. 유전상담은 21세기 post-genome의 맞춤의료시대에서 그 역할과 적응범위가 확대되어가는 유전의료서비스의 일환이라는 것을 국내 의료계와 정부 의료 정책 부서에서 인지할 필요가 있다. 특히, 국내 저진료 수가의 의료정책 제도 하에서는 의사가 환자를 위해 충분한 진료시간을 확보하기 힘든데, 비의사전문유전상담사를유전의료팀의일원으로 유전상담에 참여하게 함으로써 환자와 가족들에게 정확한 유전정보에 대한 충분한 이해를 통해서 맞춤 유전 의료 서비스를 원활하고 효율적으로 제공하는데 도움이 될 것이다. 이를 위해서는 국내에서도 종합적인 유전의료 서비스의 구축 사업의 일환으로 유전상담 서비스 공급을 위한 전문 인력(유전상담사포함) 수급에 대한 지원 사업과 유전상담에 대한 건강보험 급여 인정 등 제도적인 뒷받침이 필요하다.
어떤 클래스에 속한 레코드의 개수가 다른 클래스들에 속한 레코드의 개수보다 매우 많은 경우에, 이 데이터 집합을 '불균형 데이터 집합'이라고 한다. 데이터 분류에 사용되는 많은 기법들은 이러한 불균형 데이터에 대해서 저조한 성능을 보인다. 어떤 기법의 성능을 평가할 때에 적중률뿐만 아니라, 민감도와 특이도도 함께 측정하여야 한다. 고객의 이탈을 예측하는 문제에서 '유지' 레코드가 다수 클래스를 차지하고, '이탈' 레코드는 소수 클래스를 차지한다. 민감도는 실제로 '유지'인 레코드를 '유지'로 예측하는 비율이고, 특이도는 실제로 '이탈'인 레코드를 '이탈'로 예측하는 비율이다. 많은 데이터 마이닝 기법들이 불균형 데이터에 대해서 저조한 성능을 보이는 것은 바로 소수 클래스의 적중률인 특이도가 낮기 때문이다. 불균형 데이터 집합에 대처하는 과거 연구 중에는 소수 클래스를 Oversampling하여 균형 데이터 집합을 생성한 후에 데이터 마이닝 기법을 적용한 연구들이 있다. 이렇게 균형 데이터 집합을 생성하여 예측을 수행하면, 특이도는 다소 향상시킬 수 있으나 그 대신 민감도가 하락하게 된다. 본 연구에서는 민감도는 유지하면서 특이도를 향상시키는 모델을 개발하였다. 개발된 모델은 Support Vector Machine (SVM), 인공신경망(ANN) 그리고 의사결정나무 기법 등으로 구성된 하이브리드 모델로서, Hybrid SVM Model이라고 명명하였다. 구축과정 및 예측과정은 다음과 같다. 원래의 불균형 데이터 집합으로 SVM_I Model과 ANN_I Model을 구축한다. 불균형 데이터 집합으로부터 Oversampling을 하여 균형 데이터 집합을 생성하고, 이것으로 SVM_B Model을 구축한다. SVM_I Model은 민감도에서 우수하고, SVM_B Model은 특이도에서 우수하다. 입력 레코드에 대해서 SVM_I와 SVM_B가 동일한 예측치를 도출하면 그것을 최종 해로 결정한다. SVM_I와 SVM_B가 상이한 예측치를 도출한 레코드에 대해서는 ANN과 의사결정나무의 도움으로 판별 과정을 거쳐서 최종 해를 결정한다. 상이한 예측치를 도출한 레코드에 대해서는, ANN_I의 출력값을 입력속성으로, 실제 이탈 여부를 목표 속성으로 설정하여 의사결정나무 모델을 구축한다. 그 결과 다음과 같은 2개의 판별규칙을 얻었다. 'IF ANN_I output value < 0.285, THEN Final Solution = Retention' 그리고 'IF ANN_I output value
인터넷이라는 가상 공간을 활용함으로써 물리적 공간의 제약을 갖는 오프라인 쇼핑의 한계를 넘어선 온라인 쇼핑은 다양한 기호를 가진 소비자를 만족시킬 수 있는 수많은 상품을 진열할 수 있게 되었다. 그러나, 이는 역설적으로 소비자가 구매의사결정 과정에서 너무 많은 대안을 비교 평가해야 하는 어려움을 겪게 함으로써 오히려 상품 선택을 방해하는 원인이 되기도 한다. 이런 부작용을 해소하기 위한 노력으로서, 연관 상품 추천은 수많은 상품을 다루는 온라인 상거래에서 소비자의 구매의사결정 과정 중 정보탐색 및 대안평가에 소요되는 시간과 노력을 줄여주고 이탈을 방지하며 판매자의 매출 증대에 기여할 수 있다. 연관 상품 추천에 사용되는 연관 규칙 마이닝 기법은 통계적 방법을 통해 주문과 같은 거래 데이터로부터 서로 연관성 높은 상품을 효과적으로 발견할 수 있다. 하지만, 이 기법은 거래 건수를 기반으로 하므로, 잠재적으로 판매 가능성이 높을지라도 충분한 거래 건수가 확보되지 못한 상품은 추천 목록에서 누락될 수 있다. 이렇게 추천 시 제외된 상품은 소비자에게 구매될 수 있는 충분한 기회를 확보하지 못할 수 있으며, 또 다시 다른 상품에 비해 상대적으로 낮은 추천 기회를 얻는 악순환을 겪을 수도 있다. 본 연구는 구매의사결정이 결국 상품이 지닌 속성에 대한 사용자의 평가를 기반으로 한다는 점에 착안하여, 추천 시 상품의 속성을 반영하면 소비자가 특정 상품을 선택할 확률을 좀더 정확하게 예측할 수 있다는 점을 추천 시스템에 반영하기 위한 목적으로 수행되었다. 즉, 어떤 상품 페이지를 방문한 소비자는 그 상품이 지닌 속성들에 어느 정도 관심을 보인 것이며 추천 시스템은 이런 속성들을 기반으로 연관성을 지닌 상품을 더 정교하게 찾을 수 있다는 것이다. 상품의 주요 속성의 하나로서, 카테고리는 두 상품 간에 아직 드러나지 않은 잠재적인 연관성을 찾기에 적합한 대상이 될 수 있다고 판단하였다. 본 연구는 연관 상품 추천에 상품 간의 연관성뿐만 아니라 카테고리 간의 연관성을 추가로 반영함으로써 추천의 정확도를 높일 수 있는 예측모형을 개발하였고, 온라인 쇼핑몰로부터 수집된 주문 데이터를 활용하여 이루어진 실험은 기존 모형에 비해 추천 성능이 개선됨을 보였다. 실무적인 관점에서 볼 때, 본 연구는 소비자의 구매 만족도를 향상시키고 판매자의 매출을 증가시키는 데에 기여할 수 있을 것으로 기대된다.
연구는 외식업체에서 제공하고 있는 식단 중에 PHF(Potentially Hazardous Foods)메뉴를 Screening하여, 미생물적 품질을 향상시킬 수 있는 중점관리기준의 관리방안을 제시하고자 하는 목적으로 연구가 진행되었다. 1. 실온에 방치되어 있던 시금치나물은 미생물 증식이 가능한 위험 온도 범위인
조류인플루엔자와 구제역 같은 동물감염병은 거의 매년 발생하며 국가에 막대한 경제적 사회적 손실을 일으키고 있다. 이를 예방하기 위해서 그간 방역당국은 다양한 인적, 물적 노력을 기울였지만 감염병은 지속적으로 발생해 왔다. 최근 빅데이터와 딥러닝 기술을 활용하여 감염병의 예측모델을 개발하고자 하는 시도가 시작되고 있지만, 실제로 활용가능한 모델구축 연구와 사례보고는 활발히 진행되고 있지 않은 실정이다. KT와 과학기술정보통신부는 2014년부터 국가 R&D사업의 일환으로 축산관련 차량의 이동경로를 분석하여 예측하는 빅데이터 사업을 수행하고 있다. 동물감염병 예방을 위하여 연구진은 최초에는 차량이동 데이터를 활용한 회귀분석모델을 기반으로 한 예측모델을 개발하였다. 이후에는 기계학습을 활용하여 좀 더 정확한 예측 모델을 구성하였다. 특히, 2017년 예측모델에서는 시설물에 대한 확산 위험도를 추가하였고 모델링의 하이퍼 파라미터를 다양하게 고려하여 모델의 성능을 높였다. 정오분류표와 ROC 커브를 확인한 결과, 기계 학습 모델보다 2017년 구성된 모형이 우수함을 확인 할 수 있었다. 또한 2017에는 결과에 대한 설명을 추가하여 방역당국의 의사결정을 돕고 이해관계자를 설득할 수 있는 근거를 확보하였다. 본 연구는 빅데이터를 활용하여 동물감염병예방시스템을 구축한 사례연구로 모델주요변수값, 이에따른 실제예측성능결과, 그리고 상세하게 기술된 시스템구축 프로세스는 향후 감염병예방 영역의 지속적인 빅데이터활용 및 분석 모델 개발에 기여할 수 있을 것이다. 또한 본 연구에서 구축한 시스템을 통해 보다 사전적이고 효과적인 방역을 할 수 있을 것으로 기대한다.
ICT 인프라의 이상탐지를 통한 유지보수와 장애 예방이 중요해지고 있다. 장애 예방을 위해서 이상탐지에 대한 관심이 높아지고 있으며, 지금까지의 다양한 이상탐지 기법 중 최근 연구들에서는 딥러닝을 활용하고 있으며 오토인코더를 활용한 모델을 제안하고 있다. 이는 오토인코더가 다차원 다변량에 대해서도 효과적으로 처리가 가능하다는 것이다. 한편 학습 시에는 많은 컴퓨터 자원이 소모되지만 추론과정에서는 연산을 빠르게 수행할 수 있어 실시간 스트리밍 서비스가 가능하다. 본 연구에서는 기존 연구들과 달리 오토인코더에 2가지 요소를 가미하여 이상탐지의 성능을 높이고자 하였다. 먼저 다차원 데이터가 가지고 있는 속성별 특징을 최대한 부각하여 활용하기 위해 멀티모달 개념을 적용한 멀티모달 오토인코더를 적용하였다. CPU, Memory, network 등 서로 연관이 있는 지표들을 묶어 5개의 모달로 구성하여 학습 성능을 높이고자 하였다. 또한, 시계열 데이터의 특징을 데이터의 차원을 늘리지 않고 효과적으로 학습하기 위하여 조건부 오토인코더(conditional autoencoder) 구조를 활용하는 조건부 멀티모달 오토인코더(Conditional Multimodal Autoencoder, CMAE)를 제안하였다. 제안한 CAME 모델은 비교 실험을 통해 검증했으며, 기존 연구들에서 많이 활용된 오토인코더와 비교하여 AUC, Accuracy, Precision, Recall, F1-score의 성능 평가를 진행한 결과 유니모달 오토인코더(UAE)와 멀티모달 오토인코더(Multimodal Autoencoder, MAE)의 성능을 상회하는 결과를 얻어 이상탐지에 있어 효과적이라는 것을 확인하였다.
최근 IT 기술과 데이터의 범람으로 생활 전반적인 부분의 패러다임이 전환되고 있다. 이러한 기술의 발전과 변화는 학술영역에도 영향을 미치고 있다. 학문적 교류와 연계를 통해 연구주제나 연구 방법의 개선이 이루어지고 있다. 특히, 데이터 기반의 연구 방법이 다양한 학문분야에서 진행되고 있으며 조경학에서도 지속적인 연구가 필요한 시점이다. 따라서 본 연구에서는 이러한 시대적 상황을 반영하여 인공지능의 한 분야인 머신러닝을 활용한 경관 선호 평가 및 예측모델의 개발 가능성을 알아보는 것을 목표로 한다. 본 연구의 목표를 달성하기 위하여 경관 분야에 머신러닝 기법을 적용하여 경관 선호 평가 및 예측 모델을 구축하고, 구축된 모형의 모의정도를 검증하였다. 이를 위해 본 연구에서는 최근 신재생에너지 사업으로 주목받는 풍력발전시설 경관 이미지를 연구대상으로 선정하였다. 분석을 위하여 풍력발전시설 경관 이미지를 웹크롤링 기법을 활용하여 수집하고 분석 테이터셋을 구축하였다. 우수한 성능의 예측모델 도출을 위하여 머신러닝 분석에 활용되는 University of Ljubljana의 프로그램인 오렌지 버전 3.33을 활용하였다. 또, 머신러닝 학습데이터의 평가기준을 통합한 모델과 평가기준 별도 모델 구조를 활용하였으며, 머신러닝 분류모델에 적합한 kNN. SVM, Random Forest, Logistic Regression, Neural Network 알고리즘을 사용해 모델을 생성하였다. 생성된 모델을 성능 평가를 실시하여 본 연구에 가장 적합한 예측모델을 도출하였다. 본 연구에서 도출된 예측모델은 경관의 유형에 따른 분류, 경관과 대상의 시거리에 따른 분류, 선호에 따른 분류 등 3가지 평가기준을 별도로 평가 후 종합해 예측하여 결과를 도출하였다. 연구 결과 경관 유형에 따른 평가 기준 정확도 0.986, 시거리에 따른 평가 기준 정확도 0.973, 선호에 따른 평가 기준 정확도 0.952에 달하는 높은 정확도를 가진 예측모델을 개발하였으며, 평가데이터 예측 결과를 통한 검증과정을 보아도 모델의 성능 치를 상회하는 성과를 도출했음을 알 수 있다. 경관 관련 연구에서 머신러닝을 활용한 예측모델 개발 가능성을 알아본 실험적 시도로 이미지 데이터의 수집 및 정제를 통해 데이터 세트를 구축하여 높은 성능의 예측모델이 생성 가능하며, 이후 경관 관련 연구 분야에 활용될 수 있다는 가능성을 확인할 수 있었다. 본 연구의 결과와 시사점, 한계점을 반영한다면 풍력발전시설의 경관뿐만 아니라 자연경관이나 문화경관 등 다양한 형태의 경관 예측모델 개발이 가능할 것으로 생각되며, 경관 유형에 따라 이미지를 분류하는 모델의 연구를 통해 데이터 분류의 시간을 단축하거나 머신러닝을 활용한 경관예측 인자분석을 통해 경관계획 요소의 중요도 분석 등의 주제에 맞는 연구 방법을 탐색하고 적용하여 후속 연구를 진행한다면 조경학 분야에서도 머신러닝 기법을 보다 유용하고 가치 있게 활용할 수 있을 것으로 생각된다.
The wall shear stress in the vicinity of end-to end anastomoses under steady flow conditions was measured using a flush-mounted hot-film anemometer(FMHFA) probe. The experimental measurements were in good agreement with numerical results except in flow with low Reynolds numbers. The wall shear stress increased proximal to the anastomosis in flow from the Penrose tubing (simulating an artery) to the PTFE: graft. In flow from the PTFE graft to the Penrose tubing, low wall shear stress was observed distal to the anastomosis. Abnormal distributions of wall shear stress in the vicinity of the anastomosis, resulting from the compliance mismatch between the graft and the host artery, might be an important factor of ANFH formation and the graft failure. The present study suggests a correlation between regions of the low wall shear stress and the development of anastomotic neointimal fibrous hyperplasia(ANPH) in end-to-end anastomoses. 30523 T00401030523 ^x Air pressure decay(APD) rate and ultrafiltration rate(UFR) tests were performed on new and saline rinsed dialyzers as well as those roused in patients several times. C-DAK 4000 (Cordis Dow) and CF IS-11 (Baxter Travenol) reused dialyzers obtained from the dialysis clinic were used in the present study. The new dialyzers exhibited a relatively flat APD, whereas saline rinsed and reused dialyzers showed considerable amount of decay. C-DAH dialyzers had a larger APD(11.70
The wall shear stress in the vicinity of end-to end anastomoses under steady flow conditions was measured using a flush-mounted hot-film anemometer(FMHFA) probe. The experimental measurements were in good agreement with numerical results except in flow with low Reynolds numbers. The wall shear stress increased proximal to the anastomosis in flow from the Penrose tubing (simulating an artery) to the PTFE: graft. In flow from the PTFE graft to the Penrose tubing, low wall shear stress was observed distal to the anastomosis. Abnormal distributions of wall shear stress in the vicinity of the anastomosis, resulting from the compliance mismatch between the graft and the host artery, might be an important factor of ANFH formation and the graft failure. The present study suggests a correlation between regions of the low wall shear stress and the development of anastomotic neointimal fibrous hyperplasia(ANPH) in end-to-end anastomoses. 30523 T00401030523 ^x Air pressure decay(APD) rate and ultrafiltration rate(UFR) tests were performed on new and saline rinsed dialyzers as well as those roused in patients several times. C-DAK 4000 (Cordis Dow) and CF IS-11 (Baxter Travenol) reused dialyzers obtained from the dialysis clinic were used in the present study. The new dialyzers exhibited a relatively flat APD, whereas saline rinsed and reused dialyzers showed considerable amount of decay. C-DAH dialyzers had a larger APD(11.70
결제서비스에 대한 기존의 연구는 결제서비스의 채택요인 또는 지속적인 사용에 영향을 미치는 요인 등 행동이론을 중심으로 진행되어 왔다. 이러한 요인들이 미치는 영향에 대한 결과는 결제서비스의 종류에 따라 또는 연구 지역에 따라 상이하게 나타나고 있다. 본 연구는 결제 서비스의 종류나 문화등의 변수에 관계없이 새로운 결제 서비스가 성공할 수 있는 일반적인 요인이 무엇인지에 대한 의문에서 시작하게 되었다. 기존 연구에서 중요한 영향을 미친다고 제시한 채택요인들은 실제 결제사례의 결과에 비추어 보면 기존 연구에서 주장한 바와 일치하지 않는 경우를 볼 수 있다. 이러한 이론과 현실사이의 괴리를 발견하고 새로운 결제서비스가 성공하기 위한 근본적이고 결정적인 요인이 무엇인지에 대해 제시하고 사례연구를 통해 가설을 입증하고자 하는 것이 본 연구의 목적이다. 따라서 본 연구는 새로운 결제서비스가 성공하기 위해서는 기존 결제서비스의 비고객에게 이들이 결제할 수 있는 수단을 제공함으로써 새로운 결제 시장을 창출해야 함을 주장한다. 이를 위해 성공한 결제사례인 신용카드, 휴대폰 소액결제, PayPal, Square을 채택하였으며, 기존 결제서비스의 비고객을 3개의 계층으로 분류하여 분석하였다. 그리고 새로운 결제서비스가 어떠한 계층을 타겟으로 하였으며 이들에게 어떠한 결제수단을 제공하여 새로운 시장을 창출하였는지 제시한다. 사례 분석 결과, 성공 사례 모두 본 연구의 가설을 지지하는 것으로 나타났다. 따라서 새로운 결제서비스는 결국 기존의 결제수단으로 거래를 할 수 없었던 이들이 결제를 할 수 있도록 함으로써 성공할 수 있다는 가설을 입증하였다. 모바일 결제서비스가 아직 대중화되지 못한 원인을 본 가설에 비추어 분석해 보면 보면, 기존의 결제 인프라를 이용할 수 있는 바코드, QR코드 기반의 모바일 결제 서비스뿐만 아니라 NFC, BLE, 음파 등의 새로운 기술이 적용된 모바일 결제 서비스가 출시되는 등 새로운 시도가 계속되고 있다. 또한 모바일 월렛은 사용자들이 소지하고 있는 카드정보를 스마트폰에 저장하여 지갑 없이도 결제가 가능하며, 쿠폰 제공, 적립카드 관리, 신분증을 저장하는 등의 다양한 부가적인 기능을 제공하고 있어 성공할 것이라는 전망이 대두되고 있다. 하지만 이러한 서비스들은 본 연구 관점에서 보자면 기존 결제서비스의 비고객이(기존 결제수단을 이용할 수 없었던 사용자) 거래할 수 있는 새로운 결제 수단을 제공해 주지 못하고 있기 때문에 결국 초기사용자에게만 채택될 뿐 대중화되는데 한계가 있을 것으로 예상된다. 반면, 새로운 모바일 결제서비스의 성공사례 중 하나인 PaybyPhone은 기존 코인주차 결제서비스의 비고객인 현금 미소지 고객에게 스마트폰을 이용한 새로운 결제수단을 제공함으로써 새로운 주차 결제 시장을 창출하였으며 현재 미국뿐만 아니라 유럽시장까지 진출하는 등 급성장하고 있다. 결론적으로, 많은 이해관계자들이 모바일 결제시장을 선점하기 위해 다양한 형태의 모바일 결제 서비스를 출시하고 있지만 캐즘을 뛰어넘어 주류 시장에 성공적으로 정착할 수 있느냐는 결국 기존 결제서비스의 비고객군에게 그들이 필요로 하는 새로운 결제수단을 제공하는지의 여부에 달려있다고 볼 수 있다. 따라서 모바일 결제 서비스의 기획자나 매니저들은 서비스 기획 시 기존 결제서비스의 비고객군은 누구인가? 그들은 어떠한 결제수단을 원하는가?를 먼저 고려해야 한다. 본 연구는 새로운 결제서비스가 성공하는데 미치는 요인에 대한 가설을 검증하기 위해 4개의 성공사례를 선택하였으며 각 사례에 동일한 가설을 검증하는 '반복연구논리'를 적용하였다. 본 가설을 더욱 공고히 하기 위해 사례연구방법론에서 제시하고 있는 경쟁가설을 포함한 후속 사례연구가 진행되어야 할 것이다.