• Title/Summary/Keyword: Improved genetic algorithm

Search Result 341, Processing Time 0.023 seconds

DNA Sequence Design using $\varepsilon$ -Multiobjective Evolutionary Algorithm ($\varepsilon$-다중목적함수 진화 알고리즘을 이용한 DNA 서열 디자인)

  • Shin Soo-Yong;Lee In-Hee;Zhang Byoung-Tak
    • Journal of KIISE:Software and Applications
    • /
    • v.32 no.12
    • /
    • pp.1217-1228
    • /
    • 2005
  • Recently, since DNA computing has been widely studied for various applications, DNA sequence design which is the most basic and important step for DNA computing has been highlighted. In previous works, DNA sequence design has been formulated as a multi-objective optimization task, and solved by elitist non-dominated sorting genetic algorithm (NSGA-II). However, NSGA-II needed lots of computational time. Therefore, we use an $\varepsilon$- multiobjective evolutionarv algorithm ($\varepsilon$-MOEA) to overcome the drawbacks of NSGA-II in this paper. To compare the performance of two algorithms in detail, we apply both algorithms to the DTLZ2 benchmark function. $\varepsilon$-MOEA outperformed NSGA-II in both convergence and diversity, $70\%$ and $73\%$ respectively. Especially, $\varepsilon$-MOEA finds optimal solutions using small computational time. Based on these results, we redesign the DNA sequences generated by the previous DNA sequence design tools and the DNA sequences for the 7-travelling salesman problem (TSP). The experimental results show that $\varepsilon$-MOEA outperforms the most cases. Especially, for 7-TSP, $\varepsilon$-MOEA achieves the comparative results two tines faster while finding $22\%$ improved diversity and $92\%$ improved convergence in final solutions using the same time.

Optimal Auto-tuning Algorithm for Design of a Hybrid Fuzzy Controller (하이브리드 퍼지제어기의 설계를 위한 최적 자동동조알고리즘)

  • Kim, Joong-Young;Lee, Dae-Keun;Oh, Sung-Kwan;Kim, Hyun-Ki
    • Proceedings of the KIEE Conference
    • /
    • 1999.07b
    • /
    • pp.501-503
    • /
    • 1999
  • In this paper, the design method of a hybrid fuzzy controller with an optimal auto-tuning method is proposed. The conventional PID controller becomes so sensitive to the control environments and the change of parameters that the efficiency of its utility for the complex and nonlinear plant has been questioned in transient state. In this paper, first, a hybrid fuzzy logic controller(HFLC) is proposed. The control input of the system in the HFLC is a convex combination by a fuzzy variable of the FLC's output in transient state and the PID's output in steady state. Second, a powerful auto-tuning algorithm is presented to automatically improve the Performance of controller, utilizing the improved complex method and the genetic algorithm. The algorithm estimates automatically the optimal values of scaling factors and PID coefficients. Controllers are applied to the plants with time-delay and the DC servo motor Computer simulations are conducted at the step input and the system performances are evaluated in the ITAE.

  • PDF

MULTI-STAGE AERODYNAMIC DESIGN OF AIRCRAFT GEOMETRIES BY KRIGING-BASED MODELS AND ADJOINT VARIABLE APPROACH (Kriging 기반 모델과 매개변수(Adjoint Variable)법을 이용한 항공기형상의 2단계 공력최적설계)

  • Yim, J.W.;Lee, B.J.;Kim, C.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2009.04a
    • /
    • pp.57-65
    • /
    • 2009
  • An efficient and high-fidelity design approach for wing-body shape optimization is presented. Depending on the size of design space and the number of design of variable, aerodynamic shape optimization process is carried out via different optimization strategies at each design stage. In the first stage, global optimization techniques are applied to planform design with a few geometric design variables. In the second stage, local optimization techniques are used for wing surface design with a lot of design variables to maintain a sufficient design space with a high DOF (Degree of Freedom) geometric change. For global optimization, Kriging method in conjunction with Genetic Algorithm (GA) is used. Asearching algorithm of EI (Expected Improvement) points is introduced to enhance the quality of global optimization for the wing-planform design. For local optimization, a discrete adjoint method is adopted. By the successive combination of global and local optimization techniques, drag minimization is performed for a multi-body aircraft configuration while maintaining the baseline lift and the wing weight at the same time. Through the design process, performances of the test models are remarkably improved in comparison with the single stage design approach. The performance of the proposed design framework including wing planform design variables can be efficiently evaluated by the drag decomposition method, which can examine the improvement of various drag components, such as induced drag, wave drag, viscous drag and profile drag.

  • PDF

Design of Steel Structures Using the Neural Networks with Improved Learning (개선된 인공신경망의 학습방법에 의한 강구조물의 설계)

  • Choi, Byoung Han;Lim, Jung Hwan
    • Journal of Korean Society of Steel Construction
    • /
    • v.17 no.6 s.79
    • /
    • pp.661-672
    • /
    • 2005
  • For the efficient stochastic optimization of steel structures for which a large number of analyses is required, artificial neural networks,which have emerged as a powerful tool that could have been used to replace time-consuming procedures in many scientific or engineering applications, are applied. They are utilized for the solution of the equilibrium equations resulting from the application of the finite element method in connection with the reanalysis type of problem, for which a large number of finite element analyses are required in this study. As such, the use of artificial neural networks to predict finite element analysis outputs simplifies and facilitates the performance of the stochastic optimal design of structural systems where a trained neural network is used to replace the structural reanalysis phase. Moreover, to improve efficiency of used artificial neural networks, genetic algorithm is utilized. The stochastic optimizer used in this study is an algorithm based on the evolution theory. The efficiency of the proposed procedure is examined in problems with both volume (weight) functions and real-world cost functions

Genetic lesion matching algorithm using medical image (의료영상 이미지를 이용한 유전병변 정합 알고리즘)

  • Cho, Young-bok;Woo, Sung-Hee;Lee, Sang-Ho;Han, Chang-Su
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.5
    • /
    • pp.960-966
    • /
    • 2017
  • In this paper, we proposed an algorithm that can extract lesion by inputting a medical image. Feature points are extracted using SIFT algorithm to extract genetic training of medical image. To increase the intensity of the feature points, the input image and that raining image are matched using vector similarity and the lesion is extracted. The vector similarity match can quickly lead to lesions. Since the direction vector is generated from the local feature point pair, the direction itself only shows the local feature, but it has the advantage of comparing the similarity between the other vectors existing between the two images and expanding to the global feature. The experimental results show that the lesion matching error rate is 1.02% and the processing speed is improved by about 40% compared to the case of not using the feature point intensity information.

Optimization of a Centrifugal Compressor Impeller(II): Artificial Neural Network and Genetic Algorithm (원심압축기 최적화를 위한 연구(II): 인공지능망과 유전자 알고리즘)

  • Choi, Hyoung-Jun;Park, Young-Ha;Kim, Chae-Sil;Cho, Soo-Yong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.39 no.5
    • /
    • pp.433-441
    • /
    • 2011
  • The optimization of a centrifugal compressor was conducted. The ANN (Artificial Neural Network) was adopted as an optimization algorithm, and it was learned and trained with the DOE (Design of Experiment). In the DOE, it was predicted the main effect and the interaction effect of design variables to the objective function. The ANN was improved in the optimization process using the GA (Genetic Algorithm). When any output at each generation was reached a standard level, it was re-calculated by the CFD (Computational Fluid Dynamics) and it was applied to develop a new ANN. After 6th generation, the prediction difference between ANN and CFD was less than 1%. A pareto of the efficiency versus the pressure ratio was obtained through the 21th generation. Using this method, the computational time for the optimization was equivalent to the time consumed by the gradient method, and the optimized results of multi-objective function were obtained.

An efficient approach for model updating of a large-scale cable-stayed bridge using ambient vibration measurements combined with a hybrid metaheuristic search algorithm

  • Hoa, Tran N.;Khatir, S.;De Roeck, G.;Long, Nguyen N.;Thanh, Bui T.;Wahab, M. Abdel
    • Smart Structures and Systems
    • /
    • v.25 no.4
    • /
    • pp.487-499
    • /
    • 2020
  • This paper proposes a novel approach to model updating for a large-scale cable-stayed bridge based on ambient vibration tests coupled with a hybrid metaheuristic search algorithm. Vibration measurements are carried out under excitation sources of passing vehicles and wind. Based on the measured structural dynamic characteristics, a finite element (FE) model is updated. For long-span bridges, ambient vibration test (AVT) is the most effective vibration testing technique because ambient excitation is freely available, whereas a forced vibration test (FVT) requires considerable efforts to install actuators such as shakers to produce measurable responses. Particle swarm optimization (PSO) is a famous metaheuristic algorithm applied successfully in numerous fields over the last decades. However, PSO has big drawbacks that may decrease its efficiency in tackling the optimization problems. A possible drawback of PSO is premature convergence leading to low convergence level, particularly in complicated multi-peak search issues. On the other hand, PSO not only depends crucially on the quality of initial populations, but also it is impossible to improve the quality of new generations. If the positions of initial particles are far from the global best, it may be difficult to seek the best solution. To overcome the drawbacks of PSO, we propose a hybrid algorithm combining GA with an improved PSO (HGAIPSO). Two striking characteristics of HGAIPSO are briefly described as follows: (1) because of possessing crossover and mutation operators, GA is applied to generate the initial elite populations and (2) those populations are then employed to seek the best solution based on the global search capacity of IPSO that can tackle the problem of premature convergence of PSO. The results show that HGAIPSO not only identifies uncertain parameters of the considered bridge accurately, but also outperforms than PSO, improved PSO (IPSO), and a combination of GA and PSO (HGAPSO) in terms of convergence level and accuracy.

The Design of Target Tracking System Using the Identification of TS Fuzzy Model (TS 퍼지 모델 동정을 이용한 표적 추적 시스템 설계)

  • Lee, Bum-Jik;Joo, Young-Hoon;Park, Jin-Bae
    • Proceedings of the KIEE Conference
    • /
    • 2001.07d
    • /
    • pp.1958-1960
    • /
    • 2001
  • In this paper, we propose the design methodology of target tracking system using the identification of TS fuzzy model based on genetic algorithm(GA) and RLS algorithm. In general, the objective of target tracking is to estimate the future trajectory of the target based on the past position of the target obtained from the sensor. In the conventional and mathematical nonlinear filtering method such as extended Kalman filter(EKF), the performance of the system may be deteriorated in highly nonlinear situation. In this paper, to resolve these problems of nonlinear filtering technique, the error of EKF by nonlinearity is compensated by identifying TS fuzzy model. In the proposed method, after composing training datum from the parameters of EKF, by identifying the premise and consequent parameters and the rule numbers of TS fuzzy model using GA, and by tuning finely the consequent parameters of TS fuzzy model using recursive least square(RLS) algorithm, the error of EKF is compensated. Finally, the proposed method is applied to three dimensional tracking problem, and the simulation results shows that the tracking performance is improved by the proposed method.

  • PDF

CLUSTERING DNA MICROARRAY DATA BY STOCHASTIC ALGORITHM

  • Shon, Ho-Sun;Kim, Sun-Shin;Wang, Ling;Ryu, Keun-Ho
    • Proceedings of the KSRS Conference
    • /
    • 2007.10a
    • /
    • pp.438-441
    • /
    • 2007
  • Recently, due to molecular biology and engineering technology, DNA microarray makes people watch thousands of genes and the state of variation from the tissue samples of living body. With DNA Microarray, it is possible to construct a genetic group that has similar expression patterns and grasp the progress and variation of gene. This paper practices Cluster Analysis which purposes the discovery of biological subgroup or class by using gene expression information. Hence, the purpose of this paper is to predict a new class which is unknown, open leukaemia data are used for the experiment, and MCL (Markov CLustering) algorithm is applied as an analysis method. The MCL algorithm is based on probability and graph flow theory. MCL simulates random walks on a graph using Markov matrices to determine the transition probabilities among nodes of the graph. If you look at closely to the method, first, MCL algorithm should be applied after getting the distance by using Euclidean distance, then inflation and diagonal factors which are tuning modulus should be tuned, and finally the threshold using the average of each column should be gotten to distinguish one class from another class. Our method has improved the accuracy through using the threshold, namely the average of each column. Our experimental result shows about 70% of accuracy in average compared to the class that is known before. Also, for the comparison evaluation to other algorithm, the proposed method compared to and analyzed SOM (Self-Organizing Map) clustering algorithm which is divided into neural network and hierarchical clustering. The method shows the better result when compared to hierarchical clustering. In further study, it should be studied whether there will be a similar result when the parameter of inflation gotten from our experiment is applied to other gene expression data. We are also trying to make a systematic method to improve the accuracy by regulating the factors mentioned above.

  • PDF

Structural damage identification with output-only measurements using modified Jaya algorithm and Tikhonov regularization method

  • Guangcai Zhang;Chunfeng Wan;Liyu Xie;Songtao Xue
    • Smart Structures and Systems
    • /
    • v.31 no.3
    • /
    • pp.229-245
    • /
    • 2023
  • The absence of excitation measurements may pose a big challenge in the application of structural damage identification owing to the fact that substantial effort is needed to reconstruct or identify unknown input force. To address this issue, in this paper, an iterative strategy, a synergy of Tikhonov regularization method for force identification and modified Jaya algorithm (M-Jaya) for stiffness parameter identification, is developed for damage identification with partial output-only responses. On the one hand, the probabilistic clustering learning technique and nonlinear updating equation are introduced to improve the performance of standard Jaya algorithm. On the other hand, to deal with the difficulty of selection the appropriate regularization parameters in traditional Tikhonov regularization, an improved L-curve method based on B-spline interpolation function is presented. The applicability and effectiveness of the iterative strategy for simultaneous identification of structural damages and unknown input excitation is validated by numerical simulation on a 21-bar truss structure subjected to ambient excitation under noise free and contaminated measurements cases, as well as a series of experimental tests on a five-floor steel frame structure excited by sinusoidal force. The results from these numerical and experimental studies demonstrate that the proposed identification strategy can accurately and effectively identify damage locations and extents without the requirement of force measurements. The proposed M-Jaya algorithm provides more satisfactory performance than genetic algorithm, Gaussian bare-bones artificial bee colony and Jaya algorithm.