• Title/Summary/Keyword: Improved Shape

Search Result 1,599, Processing Time 0.028 seconds

Gas-Assisted Injection Molding for Box Shape Molded Parts (박스형태 제품의 가스사출성형)

  • 조재성
    • Transactions of Materials Processing
    • /
    • v.8 no.3
    • /
    • pp.276-283
    • /
    • 1999
  • This study focuses on part quality and cycle times under gas-assisted injection molding (GIM) of box shape molded parts. The position of the gas channel was established near to parting line at the end of last locations to fill. Applied hot runner and valve gates, the gas was introduced directly into the mold cavity via gas pin. As GIM was applied, the conclusion reached as follows. I) The quality of appearance was improved by reducing sink marks and scratches of texture. ii) The reliability was improved by preventing warpages and reinforcing rigidity through optimum gas channel layout. iii) It is enable to use small size of injection molding machine step by step as GIM was accomplished low pressure and reduced clamp forces against CIM. iv) The productivity were improved by reducing cycle times.

  • PDF

Finite Element Analysis on Formability of Parabolic Shape (포물선형상의 성형성에 관한 유한요소해석)

  • Chung, Sang-Won;Lee, Kyung-Won
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.21 no.4
    • /
    • pp.677-682
    • /
    • 2012
  • For the product with small diameter, long column, and parabolic shape, the forging formability of the high-carbon steel wire rod was investigated in this study. By using the three-dimensional finite element method, the formability of wire was reviewed by forming analysis for the desired parabolic shape of local part. Analysis results due to forging direction, forging velocity, friction coefficient and constraint location were also investigated. On the basis of these results, it is noted that the forging direction has the big influence when the product with long column is forged. As the forging velocity increases, buckling tends to be limited and formability of parabolic shape is improved. By constraining the lower parabolic shape part to suppress plastic strain, the effect depending on friction coefficient is not almost appeared. And good parabolic shape is obtained at the region of the forging velocity of more than 0.5 m/s.

A Study on the Modification of a Finite Element for Improving Shape Optimization (형상최적화 향상을 위한 유한요소의 개선에 관한 연구)

  • Sung, Jin-Il;Yoo, Jeong-Hoon
    • Proceedings of the KSME Conference
    • /
    • 2001.11a
    • /
    • pp.367-371
    • /
    • 2001
  • In the shape optimization based on the finite element method, the accuracy of finite element analysis of a given structure is important to determine the final shape. In case of a bending dominant problem, finite element solutions by the full integration scheme are not reliable because of the locking phenomenon. Furthermore, in the process of shape optimization, the mesh distortion is large due to the change of the structure outline: therefore, we cannot guarantee the accurate result unless the finite element itself is accurate. We approach to more accurate shape optimization to diminish these inaccuracies by improving the existing finite element. The shape optimization using the modified finite element is applied to a two-dimensional simple beam. Results show that the modified finite element have improved the optimization results.

  • PDF

Shape Optimization for Multi-Connected Structures (다연결체 구조물에 대한 형상 최적화)

  • 한석영;배현우
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.8 no.2
    • /
    • pp.151-158
    • /
    • 2000
  • The growth-strain method was used for shape optimization of multi-connected structures. It was verified that the growth-strain method is very effective for shape optimization of structures with only one free surface to be deformed. But it could not provide reasonable optimized shape for multi-connected structures, when the growth-strain method is applied as it is. The purpose of this study is to improve the growth-strain method for shape optimization of multi-connected two- and three- dimensional structures. In order to improve, the problems that occurred as the growth-strain method was applied to multi-connected structures were examined, and then the improved method was suggested. The effectiveness and practicality of the developed shape optimization system was verified by numerical examples.

  • PDF

3D Shape Descriptor Based on Surface Distance (표면 거리 기반 3차원 형태 기술자)

  • Park Hyun;Kim Jea-Hyup;Moon Young-Shik
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.43 no.3 s.309
    • /
    • pp.59-66
    • /
    • 2006
  • In this thesis, we propose a new 3D shape descriptor. The proposed descriptor measures geometric characteristics by using the shortest path on surfaces. The descriptor is robust against a change of local posture. We measure the geometric characteristics of 3D object through a new shape function to construct the shape distribution. The proposed shape function is the shortest path shape function. The shape function measures the distance between two points on the surface of a 3D object. We evaluate the performance of the proposed method, compared with the previous method. The precision of retrievals improved by 23% in the case of articulated objects and is improved by 12% in the case of general objects.

An adaptive meshfree RPIM with improved shape parameter to simulate the mixing of a thermoviscoplastic material

  • Zouhair Saffah;Mohammed Amdi;Abdelaziz Timesli;Badr Abou El Majd;Hassane Lahmam
    • Structural Engineering and Mechanics
    • /
    • v.88 no.3
    • /
    • pp.239-249
    • /
    • 2023
  • The Radial Point Interpolation Method (RPIM) has been proposed to overcome the difficulties associated with the use of the Radial Basis Functions (RBFs). The RPIM has the following properties: Simple implementation in terms of boundary conditions as in the Finite Element Method (FEM). A less expensive CPU time compared to other collocation meshless methods such as the Moving Least Square (MLS) collocation method. In this work, we propose an adaptive high-order numerical algorithm based on RPIM to simulate the thermoviscoplastic behavior of a material mixing observed in the Friction Stir Welding (FSW) process. The proposed adaptive meshfree RPIM algorithm adapts well to the geometric and physical data by choosing a good shape parameter with a good precision. Our numerical approach combines the RPIM and the Asymptotic Numerical Method (ANM). A numerical procedure is also proposed in this work to automatically determine an improved shape parameter for the RBFs. The efficiency of the proposed algorithm is analyzed in comparison with an iterative algorithm.

HIGH LEVEL SHAPE CONTROL FOR PLATE ROLLING BY USING PAIR CROSS MILL (후판압연에서의 형상제어의 고도화)

  • 김영헌;남구원
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1999.08a
    • /
    • pp.447-451
    • /
    • 1999
  • The plate crown and shape control of plate rolling has become important to obtain not only improved quality but also better yield of products and higher work ratio of rolling. Therefore, the development of a new plate crown and shape control system has been demanded in plate rolling mill. The 3rd Plate Rolling Works of POSCO introduced the new unique system

  • PDF

Effect of Silica Coating on Particle Shape and Magnetic Properties of Iron Powder(I) (실리카 피착이 철립말의 입자형태 및 자기특성에 미치는 영향 (제1보))

  • 오재희;김종식;류병환
    • Journal of the Korean Ceramic Society
    • /
    • v.22 no.6
    • /
    • pp.21-28
    • /
    • 1985
  • The properties of magnetic recording materials largely depend on their shape magnetic anisotropy. The control of their shape and size distribution is very important for improving magnetic properties. The silica-coated goethite$(SiO_2$/$\alpha$-FeOOH=1.5wt%) having acicular shape was prepared. The sillica-coated goethite was heat-treated at 40$0^{\circ}C$~1,00$0^{\circ}C$ 1hr and then reduced at 50$0^{\circ}C$ 2hr. When the silica-coated goethite was heat-treated at 80$0^{\circ}C$ its acicular shape was maintained and its magnetic properties were improved(Hc: 1,325 Oe $\sigma$m:138.8 emu/g, Rs:0.56) However the acicular shape of the paricles was broken for non-coated hematite obtained by dehydration at 80$0^{\circ}C$ They were sintered and showed poor magnetic properties.

  • PDF

Development of Morphological Pattern Recognition System - Morphological Shape Decomposition using Shape Function (형태론적 패턴인식 시스템의 개발 - 형상함수를 이용한 형태론적 형상분해)

  • Jong Ho Choi
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.32B no.8
    • /
    • pp.1127-1136
    • /
    • 1995
  • In this paper, a morphological shape decomposition method is proposed for the purpose of pattern recognition and image compression. In the method, a structuring element that geometrical characteristics is more similar to the shape function is preselected. The shape is decomposed into the primitive elements corresponding to the structuring element. A gray scale image also is transformed into 8 bit plane images for the hierarchical reconstruction required in image communication systems. The shape in each bitplane is decomposed to the proposed method. Through the experiment. it is proved that the description error is reduced and the coding efficiency is improved.

  • PDF

A Study on Shape Design of the Passenger Airbag for Efficiency Improvement (조수석 에어백 성능 개선을 위한 형상 설계연구)

  • Yang, Sunghoon;Yim, Jonghyun;Kim, Seungki;Chae, Soo-Won
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.25 no.2
    • /
    • pp.242-249
    • /
    • 2017
  • In this study, the relationship between the shape of a passenger airbag and the possibility of injury is analyzed using the Taguchi method. The optimal shape combination is proposed for a design guideline that can reduce the possibility of injury to the dummy. The airbag FE model for analysis is obtained using a CAD system that can change the shape through several independent variables. The widths of the left / right, top / bottom, and back / forth direction of the airbag shape are set as the design factors, and the effect of the combination injury probability according to the shape is analyzed. The minimum geometric combinations are obtained using the orthogonal array method. The signal to noise ratio is calculated and the optimal shape combination is obtained through sensitivity analysis. The obtained optimal shape combination is compared with the possibility of injury of the initial airbag shape to confirm improved airbag performance.