• Title/Summary/Keyword: Improved Complex Method

Search Result 559, Processing Time 0.027 seconds

A Study on System Identification of Active Magnetic Bearing Rotor System Considering Sensor and Actuator Dynamics (센서와 작동기를 고려한 자기베어링 시스템의 식별에 관한 연구)

  • Kim, Chan-Jung;Ahn, Hyeong-Joon;Han, Dong-Chul
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.1458-1463
    • /
    • 2003
  • This paper presents an improved identification algorithm of active magnetic bearing rotor systems considering sensor and actuator dynamics. An AMB rotor system has both real and complex poles so that it is very hard to identify them together. In previous research, a linear transformation through a fictitious proportional feedback was used in order to shift the real poles close to the imaginary axis. However, the identification result highly depends on the fictitious feedback gain, and it is not easy to identify the additional dynamics including sensor and actuators at the same time. First, this paper discusses the necessity and a selection criterion of the fictitious feedback gain. An appropriate feedback gain minimizes dominant SVD(Singular Value Decomposition) error through maximizing rank deficiency. Second, more improvement in the identification is achieved through separating the common additional dynamics in all elements of frequency response matrix. The feasibility of the proposed identification algorithm is proved with two theoretical AMB rotor models. Finally, the proposed scheme is compared with previous identification methods using experimental data, and a great improvement in model quality and large amount of time saving can be achieved with the proposed method.

  • PDF

A study on the ground reaction forces and plantar pressure variables in different safety shoes and applying insole during walking (안전화 형태와 Insole 착용 유무에 따른 보행동작시 하지부위에 대한 지면반발력과 압력분포 부하)

  • Kim, Jung-Jin;Choi, Sang-Bock;Cha, Sang-Eun
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.17 no.2
    • /
    • pp.131-143
    • /
    • 2007
  • The purpose of this study was to compare the ground reaction forces and plantar pressure variables among three different safety shoes (Type 1: ergonomically designed and high quality shoes, 2: curved and cushioned safety hoes, and 3: regular safety shoes) and to find the effect of insole during walking. Ten healthy subjects were recruited for this study. The ground reaction force was measured using a 3 dimensional motion analysis system. Plantar pressures were measured Pedar Mobile foot pressure scan system. The ground reaction force variables were not significantly different among three different shoe types and insole conditions. After insertion insole, plantar pressure distributions were improved. These results suggest that the type 1 safety shoes was superior than other safety shoes in the statistics, and applying insole could be a possible method to prevent fatigue of lower extremity and musculoskeletal disorders. Further studies are needed to find the effect of ergonomically designed safety shoes design and insole on practical value prevention of musculoskeletal disorder, fatigue and satisfaction of workers.

The changes of the plasma protein and the complements ($C_{3}$, $C_{4}$) after open heart surgery (개심수술후 혈장 단백 및 보체 ($C_{3}$, $C_{4}$)의 변화상 추적)

  • 남충희
    • Journal of Chest Surgery
    • /
    • v.19 no.4
    • /
    • pp.558-562
    • /
    • 1986
  • The extracorporeal circulation has been much improved recently, but has yet much complex problems such as the protein denaturation and the activation of the complement system by the exposure of the blood to the foreign surface, which may result in such as the postperfusion syndrome. We studied the changes of the plasma protein fractions by the electrophoresis and the complement consumption [C3, C4] by the immunodiffusion method in the patients undergoing cardiac operation from Mar. 1, 1986 to Aug. 31, 1986. The results were summarized as follows: 1. y-globulin fraction was decreased [p<0.02 by paired t-test, N=25], but a,-globulin was increased [p<0.001 by paired t test, N=25] after operation. 2. C3,C4 were significantly reduced [p<0.001 by paired t-test, N=14] postoperatively and normalized from 24 hours after operation. 3. The consumption of C3,C4 had significant linear correlation [correlation coefficient r=0.97] and C, was more markedly reduced comparing with C3, which probably means the complement activation by classical pathway in our bubble oxygenator group.

  • PDF

The Influence of Hydrogen Charging with the Volume Fraction of Phases in Dual Phase Steels (다상조직강의 조직 분율에 따른 수소주입의 영향)

  • Kim, Han-Sang;Kang, Kae-Myung
    • Journal of the Korean institute of surface engineering
    • /
    • v.45 no.6
    • /
    • pp.284-288
    • /
    • 2012
  • A study on microstructure control of multi-phase steel have been implemented to higher strength with improved formability. However, it is well known that the high strength of steel are susceptible to hydrogen embrittlement. The mechanisms of hydrogen embrittlement is caused by complex interactions. In this paper, the test specimens were fabricated to 5 type of 590DP steels at different levels of volume faction. The hydrogen charging was conducted by electrochemical hydrogen-charge method with varying charging time. The relationship between hydrogen concentration and volume fraction of 590DP steel was established by SP test and SEM-fractography. It was shown that the hydrogen amounts charged in 590DP steels increased with increasing the volume faction of austenite. The maximum loads of the 590DP steels in SP test were sharply decreased with increasing hydrogen charging time. The results of SEM-fractography investigation showed typical brittle-fracture surfaces for hydrogen-charged 590DP steels.

FATIGUE SIMULATION OF POWER TRAIN COMPONENTS DURING THE DESIGN PROCESS

  • Steiner, W.;Steinwender, G.;Unger, B.
    • International Journal of Automotive Technology
    • /
    • v.2 no.1
    • /
    • pp.9-16
    • /
    • 2001
  • The lifetime of power train components can be improved dramatically by finding crack initiation points with suitable software tools and optimization of the critical areas. With increasing capacities of computers the prediction of the lifetime for components by numerical methods gets more and more important. This paper discusses some applications of the outstanding fatigue simulation program FEMFAT supporting the assessment of uniaxially and multiaxially loaded components (as well as welding seams and spot joints). The theory applied in FEMFAT differs in some aspects from classical approaches like the nominal stress concept or the local one and can be characterized by the term "influence parameter method". The specimen S/N-curve is locally modified by different influence parameters as stress-gradient to take into account notch effects, mean-stress influence which is quantified by means of a Haigh-diagram, surface roughness and treatments, temperature, technological size, etc. It is possible to consider plastic deformations resulting in mean-stress rearrangements. The dynamic loading of power train components is very often multiaxial, e.g. the stress state at each time is not proportional to one single stress state. Hence, the directions of the principal axes vary with time. We will present the way how such complex load situations can be handled with FEMFAT by the examples of a crank case and a gear box.

  • PDF

User expectation and satisfaction toward public service facilities (공공서비스 시설에 대한 사용자 요구도 및 만족도 분석 -구민회관을 중심으로-)

  • Lee, So-Young;Lee, Jin-Young;Kang, Dong-Won
    • Proceeding of Spring/Autumn Annual Conference of KHA
    • /
    • 2008.04a
    • /
    • pp.376-381
    • /
    • 2008
  • Among various service characteristics, the physical environment is one of important contributors to service quality. In public service buildings, public community facilities serve as arena for education, social interaction, leisure, health activities for community districts. The purpose of this study is to investigate the physical state of public community facilities and expectations of users toward physical environment and service aspects. Site visits to four public community facilities and survey method were conducted for this study. One hundred ninety two questionnaires were analyzed. It is found that the majority of users are housewives and live near the community facilities. In order to provide more equal benefits and service to the public, it is suggested that smaller facilities should be provided in several sites instead of providing a large complex community facility to one area. Facility users indicated larger gaps between expectation and current state of the facilities regarding lack of storage, noise and ease to use. In general, physical characteristics should be more improved than employee's attitude and service behavior, which result in service quality.

  • PDF

Sliding mode control for structures based on the frequency content of the earthquake loading

  • Pnevmatikos, Nikos G.;Gantes, Charis J.
    • Smart Structures and Systems
    • /
    • v.5 no.3
    • /
    • pp.209-221
    • /
    • 2009
  • A control algorithm for seismic protection of building structures based on the theory of variable structural control or sliding mode control is presented. The paper focus in the design of sliding surface. A method for determining the sliding surface by pole assignment algorithm where the poles of the system in the sliding surface are obtained on-line, based on the frequency content of the incoming earthquake signal applied to the structure, is proposed. The proposed algorithm consists of the following steps: (i) On-line FFT process is applied to the incoming part of the signal and its frequency content is recognized. (ii) A transformation of the frequency content to the complex plane is performed and the desired location of poles of the controlled structure on the sliding surface is estimated. (iii) Based on the estimated poles the sliding surface is obtained. (iv) Then, the control force which will drive the response trajectory into the estimated sliding surface and force it to stay there all the subsequent time is obtained using Lyapunov stability theory. The above steps are repeated continuously for the entire duration of the incoming earthquake. The potential applications and the effectiveness of the improved control algorithm are demonstrated by numerical examples. The simulation results indicate that the response of a structure is reduced significantly compared to the response of the uncontrolled structure, while the required control demand is achievable.

Computational Efficiency of 3-D Contact Analysis by Domain/Boundary Decomposition Formulation (영역/경계 분할 정식화에 의한 삼차원 접촉 해석의 효율성 검토)

  • Kim, Yong-Uhn;Ryu, Han-Yeol;Shin, Eui-Sup
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.20 no.4
    • /
    • pp.469-476
    • /
    • 2007
  • A domain/boundary decomposition technique is applied to carry out efficient finite element analyses of 3-D contact problems. Appropriate penalty functions are selected for connecting an interface and contact interfaces with neighboring subdomains that satisfy continuity constraints. As a consequence, all the effective stiffness matrices have positive definiteness, and computational efficiency can be improved to a considerable degree. If necessary, any complex-shaped 3-D domain can be divided into several simple-shaped subdomains without considering the conformity of meshes along the interface. With a set of numerical examples, the basic characteristics of computational efficiency are investigated carefully.

Algorithm of Morphological Multimode Binary Shape Decomposition (형태론적 다중모드 2진 형상분해 알고리즘)

  • Choi, Jong-Ho
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.36S no.9
    • /
    • pp.67-75
    • /
    • 1999
  • In this paper, a shape decomposition method using morphological operations is studied for decomposing the complex shape in 2-D image into its simple primitive elements. The serious drawback of conventional shape representation algorithm is that primitive elements are extracted too much to represent and to describe the shape. To solve these problems, a new shape decomposition algorithm using primitive elements tat are similar to the geometrical characteristics of shape and 4 scan modes is proposed in this study. The multiple primitive elements as circle, square, and rhombus are extracted by using multiscan modes in a new algorithm. This algorithm have chatacteristics that description error and number of primitive elements is reduced. Then, description efficiency is improved. The procedures is also simple and the processing time is reduced.

  • PDF

Real-time 3-Dimensional Measurement of Lumbar Spine Range of Motion using a Wireless Sensor (무선 센서를 활용한 요추 가동 범위의 실시간 3차원 측정)

  • Jeong, Woo-Hyuk;Jee, Hae-Mi;Park, Jae-Hyun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.18 no.8
    • /
    • pp.713-718
    • /
    • 2012
  • Lumber spine range of motion has been used to measure of physical and functional impairment by various tools from a ruler to 3D kinematic devices. However, pre-existing tools have problems in either movement or accuracy and reliability limitations. Accurate devices are limited by fixed space whereas simple devices are limited in measuring complex movements with less accuracy. In order to solve the location, movement and accuracy limitations at once, we have developed a novice measurement device equipped with accelerometer sensor and gyroscope sensor for getting three-dimensional information of motion. Furthermore, Kalman filter was applied to the algorithm to improve accuracy. In addition, RF wireless communication was added for the user to conveniently check measured data in real time. Finally, the measurement method was improved by considering the movement by a reference point. An experiment was conducted to test the accuracy and reliability of the device by conducting a test-retest reliability test. Further modification will be conducted to used the device in various joints range of motion in clinical settings in the future.