• Title/Summary/Keyword: Improper Ship-handling

Search Result 3, Processing Time 0.016 seconds

A Study on the Improvement Measures for the Safe Maneuvering of Passenger Ships in Port Area through Analysis of Marine Accidents (여객선 해양사고 분석을 통한 안전한 항내조선 개선방안에 관한연구)

  • Chong, Dae-Yul
    • Journal of Navigation and Port Research
    • /
    • v.46 no.1
    • /
    • pp.18-25
    • /
    • 2022
  • MOF strengthen the law and institutions for safety management after the capsize accident of passenger ship "Sewol" on April 16, 2014. Nevertheless, about 13 cases of marine accidents such as collisions, contact, and stranding have occurred in coastal passenger ships over the past 5 years. Particularly, according to the judgment of KMST, most of the main causes of passenger ship accidents occurred within harbor areas because of the master's improper ship-handling or inattention. And so, this study analyzed four cases of marine accidents on passenger ships that occurred in the port areas and examined the environmental, institutional, material, and human factors that contributed to the master's improper ship-handling and behavior, and the results are as follows. First, as an environmental factor, the size of the turning basin was not enough. Second, as an institutional factor, the VTS control was not properly supported, the master lacked sufficient training for safe ship-handling in the port area and up-to-date charts were not provided. Third, as a material factor, the digital type speed log capable of the ship's speed in real-time was not installed on the ship's wing bridge. Lastly, as a human factor, the master could not take proper bridge resources and the passage plan was not proper. Therefore, it is suggested in this paper that the size of the turning basin should be adjusted to meet the prescribed standards, the master of passenger ships should receive the ship-handling simulation training among other safety training to ensure safe ship-handling of the master in the port area as improvement measures.

A Study on Collision Avoidance Action in the Situation of Encountering Multiple Ships by the Reserve Officer

  • Park, Deuk-Jin;Yim, Jeong-Bin;Yang, Hyeong-Sun
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.24 no.3
    • /
    • pp.346-351
    • /
    • 2018
  • The proportion of collision in the total marine accidents is high. The main causes of collisions are navigation rule violation, safety speed violation, neglected watch-keeping and improper collision avoidance action. There are two main ways of avoiding collision situations during maritime navigation: the method of altering course and reducing ship's speed. The purpose of this study is to analyze the result of the collision avoidance action of the reserve officer in case of encountering a multiple number of ships using the ship handling simulator. Full-mission ship handling simulator was used to experiment the situation scenarios that encountered multiple ships. After the experiment, the questionnaire about the experiment was investigated. A total of 50 subjects were participated in the experiment. Experimental results showed that the number of the experimenters who used the engine was 11 and the number of the experimenters who did not use the engine was 39. In the case of using the engine, there were 0 collision accident, 1 grounding accident, and 10 no accidents. However, when the engine was not used, there were 28 collision accidents, 2 grounding accidents, and 9 no accidents. The causes of these results can be found in the survey results. 74 % of the non used engine participants said they were hesitate to use the engine. As can be seen from these results, the reserve officer are hesitant to use the engine and need a way to get correct of it. Maritime course subject can emphasize the importance of using ship's engines and case study also can be it. So, It is considered that various case study scenario will need to developed by various tools in the future.

The Durability of Ships Considering Fatigue Cracking

  • Liu, Donald;Thayamballi, Anil
    • Journal of Ship and Ocean Technology
    • /
    • v.1 no.1
    • /
    • pp.57-72
    • /
    • 1997
  • The larger trends related to cracking in ocean going vessels (primarily tankers and bulk carriers) are reviewed on the basis of available data. The typical interrelated causes of such cracking are: high local stresses, extensive use of higher strength steels, inadequate treatment of dynamic loads, adverse operational factors (harsh weather, improper vessel handling), and controllable structural degradation (corrosion, wear, stevedore damage). Three consequences of cracking are then discussed: structural failure, pollution, and increased maintenance. The first two, while rare, are potentially of high consequence including loss of life. The types of solutions that can be employed to improve the durability of ships in the face of fatigue cracking are then presented. For existing vessels, these solutions range from repairs based on structural analysis or service experience, control of corrosion, and enhanced surveys. For new vessels, the use of advanced design procedures that specifically address dynamic loads and fatigue cracking is necessary. As the preferred solution to the problem of cracking in ships, this paper advocates prevention by explicit design by first principles.

  • PDF