• Title/Summary/Keyword: Imprint Lithography

Search Result 122, Processing Time 0.021 seconds

Fabrication of Hot Embossing Plastic Stamps for Microstructures (마이크로 구조물 형성을 위한 핫 엠보싱용 플라스틱 스탬프 제작)

  • Cha Nam-Goo;Park Chang-Hwa;Lim Hyun-Woo;Park Jin-Goo;Jeong Jun-Ho;Lee Eung-Sug
    • Korean Journal of Materials Research
    • /
    • v.15 no.9
    • /
    • pp.589-593
    • /
    • 2005
  • Nanoimprinting lithography (NIL) is known as a suitable technique for fabricating nano and micro structures of high definition. Hot embossing is one of NIL techniques and can imprint on thin films and bulk polymers. Key issues of hot embossing are time and expense needed to produce a stamp withstanding a high temperature and pressure. Fabrication of a metal stamp such as an electroplated nickel is cost intensive and time consuming. A ceramic stamp made by silicon is easy to break when the pressure is applied. In this paper, a plastic stamp using a high temperature epoxy was fabricated and tested. The plastic stamp was relatively inexpensive, rapid to produce and durable enough to withstanding multiple hot embossing cycles. The merits of low viscosity epoxy solutions were a fast degassing and a rapid filling the microstructures. The hot embossing process with plastic stamp was performed on PMMA substrates. The hot embossing was conducted at 12.6 bar, $120^{\circ}C$ and 10 minutes. An imprinted PMMA wafer was almost same value of the plastic stamp after 10 times embossing. Entire fabrication process from silicon master to plastic stamp was completed within 12 hours.

Polymer Optical Microring Resonator Using Nanoimprint Technique (나노 임프린트 기술을 이용한 폴리머 링 광공진기)

  • Kim, Do-Hwan;Im, Jung-Gyu;Lee, Sang-Shin;Ahn, Seh-Won;Lee, Ki-Dong
    • Korean Journal of Optics and Photonics
    • /
    • v.16 no.4
    • /
    • pp.384-391
    • /
    • 2005
  • A polymer optical microring resonator, which is laterally coupled to a straight bus waveguide, has been proposed and demonstrated using a nanoimprint technique. The propagation loss of the ring waveguide and the optical power coupling between the ring and bus waveguides was calculated by using a beam propagation method, then the dependence of the device performance on them was investigated using a transfer matrix method. We have especially introduced an imprint stamp incorporating a smoothing buffer layer made of a silicon nitride thin film. This layer played an efficient role in improving the sidewall roughness of the waveguide pattern engraved on the stamp and thus reducing the scattering loss. As a result the overall Q factor of the resonator was greatly increased. Also it reduced the gap between the ring and bus waveguides effectively to enhance the coupling between them, without relying on the direct writing method based on an e-beam writer. As for the achieved device performance at the wavelength of 1550 nm, the quality factor, the extinction ratio, and the free spectral range were ~103800, ~11 dB, and 1.16 m, respectively.