• Title/Summary/Keyword: Impregnation method

Search Result 296, Processing Time 0.033 seconds

Flexural Properties of Heat-Treatment Samama (Anthocephalus macrophyllus) Wood Impregnated by Boron and Methyl Metacrylate

  • CAHYONO, Tekat Dwi;DARMAWAN, Wayan;PRIADI, Trisna;ISWANTO, Apri Heri
    • Journal of the Korean Wood Science and Technology
    • /
    • v.48 no.1
    • /
    • pp.76-85
    • /
    • 2020
  • This study was conducted to analyze the application of boron compounds, methyl methacrylate (MMA), and heat treatment (HT) on changes in the density, moisture content, and flexural properties of samama (Anthocephalus macrophyllus) wood. Samama wood was impregnated with borax (BX) and boric acid (BA) using a pressure method at 5 atm for 4 h. Afterwards, the wood was impregnated with MMA at the same pressure and duration. Finally, the samama wood was given HT at 90 ℃ and 180 ℃. The results indicate that there was a weight gain of 93.4% in the wood impregnated using BA and MMA monomer and HT at 90 ℃. Consequently, the wood's density increased by 82.3%. Increased MOE and MOR percentages of 32.2% and 29.4%, respectively, were also found. HT at 180 ℃ degraded the wood components and MMA, and consequently, the density, MOE, and MOR also decreased. The wood impregnated by BX, BA, and MMA, and subjected to HT also had decreased moisture content (MC). This research recommends that the application of boron (BX, BA) should be combined with an MMA monomer and HT at 90 ℃ as an alternative method to improve samama wood quality. If darker color is preferable, HT should be conducted at 180 ℃.

A Study on the Impervious Effect of Middle Pressure Grouting Techniques in Using the Environmentally Friendly Impregnation Materials (친환경 주입재를 사용한 중압그라우팅 기법의 차수효과에 관한 연구)

  • Chun, Byung-Sik;Kim, Byung-Hong;Do, Jong-Nam
    • Journal of the Korean Geotechnical Society
    • /
    • v.22 no.12
    • /
    • pp.25-31
    • /
    • 2006
  • This paper studies the field applicability of the Special Chemical grouting Method (SCM) in reinforcing and reducing permeability of the back of an existing continuous wall. SCM uses double rod which imposes intermediate pressure ($981{\sim}9,810kPa$) to disturb, cut, discharge, and mix the ground. It is observed that a bulb is formed by using cement paste and environmentally friendly injection materials with minimal alkali leaching. Uniaxial compression tests, test for chemical properties and fish poison test are performed. Test results indicate that the method results in higher durability, less leaching through the use of the environmentally friendly injection material and faster mobilization of the strength. In addition, field tests confirm the formation of the bulb and the seepage cutoff wall.

Electrochemical Characteristics of Pt/PEM/Pt-Ru MEA for Water Electrolysis (수전해용 Pt/PEM/Pt-Ru MEA의 전기화학적 특성)

  • Kweon, Oh-Hwan;Kim, Kyung-Eon;Jang, In-Young;Hwang, Yong-Koo;Chung, Jang-Hoon;Moon, Sang-Bong;Kang, An-Soo
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.19 no.1
    • /
    • pp.18-25
    • /
    • 2008
  • The membrane electrode assembly(MEA) was prepared by a nonequilibrium impregnation- reduction (I-R) method. Nafion 117 and covalently cross-linked sulfonated polyetherether with tungsto- phosphoric acid (CL-SPEEK/TPA30) prepared by our laboratory, were chosen as polymer electrolyte membrane(PEM). $Pt(NH_3)_4Cl_2$, $RuCl_3$ and reducing agent $(NaBH_4)$ were used as electrocatalytic materials. Electrochemical activity surface area(ESA) and specific surface area(SSA) of Pt cathodic electrode with Nafion 117 were $22.48m^2/g$ and $23.50m^2/g$ respectively under the condition of 0.8 M $NaBH_4$. But Pt electrode prepared by CL-SPEEK/TPA30 membrane exhibited higher ESA $23.46m^2/g$ than that of Nafion 117. In case of Pt-Ru anodic electrode, the higher concentration of Ru was, the lower potential of oxygen reduction and region of hydrogen desorption was, and Pt-Ru electrode using 10 mM $RuCl_3$ showed best properties of SSA $34.09m^2/g$ with Nafion 117. In water electrolysis performance, the cell voltage of Pt/PEM/Pt-Ru MEA with Nafion 117 showed cell property of 1.75 V at $1A/cm^2$ and $80{\circ}C$. On the same condition, the cell voltage with CL-SPEEK/TPA30 was the best of 1.73 V at $1A/cm^2$.

Characteristics of CL-SPEEK/HPA Membrane Electrodes with Pt-Ni and Pt-Co Electrocatalysts for Water Electrolysis (전극 촉매 Pt-Ni 및 Pt-Co를 이용한 수전해용 공유가교 CL-SPEEK/HPA 막전극의 특성)

  • Woo, Je-Young;Lee, Kwang-Mun;Jee, Bong-Chul;Chung, Jang-Hoon;Moon, Sang-Bong;Kang, An-Soo
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.21 no.1
    • /
    • pp.26-34
    • /
    • 2010
  • The electrocatalystic prperties of Pt-Co and Pt-Ni with heteropolyacids (HPAs) entrapped in covalently cross-linked sulfonated poly(ether ether ketone) (CL-SPEEK)/HPA membranes were investigated for water electrolysis. The HP As, including molybdophosphoric acid (MoPA), and tungstophosphoric acid (TPA) were both used as membrane additives and electrocatalysts. The membrane electrode assembly (MEA) was prepared by a nonequilibrium impregnation-reduction (I-R) method. $Pt(NH_3)_4Cl_2$, $NiCl_2$ and $CoCl_2$ as electrocatalytic materials and $NaBH_4$ as reducing agent were used. I order to enhance electrocatalytic activity, the catalyst layer prepared above was electrodeposited (Dep) with HP A. Surface morphologies and physico-chemical properties of MEA were investigated by means of SEM, EDX and XRD. The electrocatalytic properties of composite membranes such as the cell voltage and coulombic charge in CV were in the order of magnitude: CL-SPEEK/MoPA40 (wt%) > CL-SPEEK/TPA30 > Nafion117. In the optimum cell applications for water electrolysis, the cell voltage of Pt/CL-SPEEK-MoPA40/Pt-Co (Dep-MoPA) and Pt/CL-SPEEK-TPA30/Pt-Co (Dep-TPA) was 1.75 Vat $80^{\circ}C$ and $1\;A/cm^2$ and voltage efficiency was 87.1%. Also, the observed activity of Pt-Co (84:16 atomic ratio by EDX) is a little higher than that of Pt-Ni (86: 14). The current density peak of electrodeposited electrodes were better a little than those of unactivated electrodes based on the same membranes.

Surface Electrode Modification and Improved Actuation Performance of Soft Polymeric Actuator using Ionic Polymer-Metal Composites (이온성고분자-금속복합체를 이용한 유연고분자 구동체의 표면특성 개선과 구동성 향상)

  • Jung, Sunghee;Lee, Myoungjoon;Song, Jeomsik;Lee, Sukmin;Mun, Museoung
    • Applied Chemistry for Engineering
    • /
    • v.16 no.4
    • /
    • pp.527-532
    • /
    • 2005
  • Ionic polymer metal composites (IPMC) are soft polymeric smart materials having large displacement at low voltage in air and water. The polymeric electrolyte actuator consists of a thin and porous membrane and metal electrodes plated on both faces, in impregnation electro-plating method. The response and actuation of actuator are governed. Among many factors governing the activation and response of IPMC actuator, the surface electrode plays an important role. In this study, the well-designed modification of electrode surface was carried out in order to improve the chemical stability well as electromechanical characteristics of the IPMC actuator. We employed Ion Beam Assisted Deposition (IBAD) method to prepare the topologically homogeneous thin surface electrode. After roughing the surface of Nafion membrane in order to get a larger surface area, the IPMC was prepared by impregnation for electro-plating and re- coating on the surface through traditional chemical deposition, followed by an additional surface treatment with high conductive metals with IBAD. It was observed that our IPMC specimen shows the enhanced surface electrical properties as well as the improved actuation and response characteristics under applied electric field.

K Addition Effect of Co3O4-based Catalyst for N2O Decomposition (N2O 분해반응용 Co3O4 기반 촉매의 K첨가 효과)

  • Hwang, Ra Hyun;Park, Ji Hye;Baek, Jeong Hun;Im, Hyo Been;Yi, Kwang Bok
    • Clean Technology
    • /
    • v.24 no.1
    • /
    • pp.35-40
    • /
    • 2018
  • $Co_3O_4$ catalysts for $N_2O$ decomposition were prepared by co-precipitation method. Ce and Zr were added during the preparation of the catalyst as promoter with the molar ratio (Ce or Zr) / Co = 0.05. Also, 1 wt% $K_2CO_3$ was doped to the prepared catalyst with impregnation method to investigate the effect of K on the catalyst performance. The prepared catalysts were characterized with SEM, BET, XRD, XPS and $H_2-TPR$. The $Co_3O_4$ catalyst exhibited a spinel crystal phase, and the addition of the promoter increased the specific surface area and reduced the particle and crystal size. It was confirmed that the doping of K improves the catalytic activity by increasing the concentration of $Co^{2+}$ in the catalyst which is an active site for catalytic reaction. The catalytic activity tests were carried out at a GHSV of $45,000h^{-1}$ and a temperature range of $250{\sim}375^{\circ}C$. The K-impregnated $Co_3O_4$ catalyst showed much higher activity than $Co_3O_4$ catalysts with promoter only. It is found that the K-impregnation increased the concentration of $Co^{2+}$ more than the added of promoter did, and lowered the reduction temperature to a great extent.

Measurement of the Apparent Density of Shred and Void Fraction in a Tobacco Column

  • Oh, In-Hyeog;Jeh, Byong-Kwon;Ra, Do-Young;Kwak, Dae-Keun;Kim, Byeoung-Ku;Jo, Si-Hyung;Rhee, Moon-Soo
    • Journal of the Korean Society of Tobacco Science
    • /
    • v.29 no.1
    • /
    • pp.23-29
    • /
    • 2007
  • The measurement of physical properties such as apparent density and void fraction of tobacco materials, which is so bulky, is a main theme with regard to tobacco process, quality control, cigarette combustion and smoke generation. Except Solution Impregnation Method, there was no alternative method for measuring those properties in the porous material so far. However, experimental processes of that method are so complicated as to cost much time and labor, the main solution such as mercury to apply to the method is usually very hazard. Therefore, we had developed a new method to determine them easily in our other paper by the mathematical equations derived from the Ergun equation for the purpose of it, and then already evaluated our method through applying some basic data from Muramatsu et at. (1979) with regard to our developed equations. Then, we found our method best fit to experimental one (Oh et al., 2001). In this study we tried to establish our method to conveniently determine those physical properties. Especially, we have focused on the development the easy way to measure surface area and the volume of single shred in a tobacco column. As a result of that, we found that the computer image analyzer was best fit for it. Then, we have finally determined apparent density and void fraction for our domestic tobacco shred.

Comprehensive Review of Golgi Staining Methods for Nervous Tissue

  • Kang, Hee Won;Kim, Ho Kyu;Moon, Bae Hun;Lee, Seo Jun;Lee, Se Jung;Rhyu, Im Joo
    • Applied Microscopy
    • /
    • v.47 no.2
    • /
    • pp.63-69
    • /
    • 2017
  • Golgi staining has been modified and developed since Camillo Golgi introduced the black reaction in 1873. This study focuses on the commonly used Golgi staining methods and presents comprehensive data regarding three Golgi staining methods along with their strong and weak points. The Golgi-Cox method uses mercuric chloride for brain tissue impregnation and is a reliable technique for analyzing the complete dendritic tree of cortical neurons. However, specimens tend to shrink during the staining steps. Recent combination of the Golgi-Cox method and immunofluorescence provides additional options for neuroscientists. Rapid Golgi staining requires osmium tetroxide for the post-fixation process. It homogenously stains whole structures of neurons and provides their detailed anatomical morphology. This staining is influenced by the age of the specimen, temperature of the laboratory, and duration of each procedure. The Golgi-Kopsch method uses formaldehyde and glutaraldehyde instead of osmium tetroxide and can be used regardless of the age of the specimen and the duration after fixation. This method is suitable for research using human brain fixed for a long time or for specimens obtained from old-aged animals. Selecting a Golgi staining protocol that is appropriate for the specimen type and research purpose is important to achieve best results.

A Study on the Nano Silica-Sol Coating for Improving Performance of Recycled Aggregate (순환골재의 성능향상을 위한 나노실리카졸의 코팅에 관한 연구)

  • Kim, Seong-Soo;Lee, Jeong-Bae;Ko, Ji-Soo;Kim, Il-Kon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.17 no.4
    • /
    • pp.84-90
    • /
    • 2013
  • In this study we propose an effective method, Coating processing methods, which can improve the quality of recycled aggregate relatively easily without new equipment investment and complex treatment process and verify the improved effect using the devised method, Coating processing methods. To attain the research aim we used adequately diluted silicate solution for coating and carried out several property valuation for twelve types of material with different coating method. Also we formed concrete with coated aggregates which showed the best property. In conclusion the aggregates with the method of repeated impregnation in the silicate and drying showed the most excellent quality while other coating methods also resulted in an improvement of aggregate quality but failed to meet the KS Standard. Lastly with the optimal material we could obtain the approved compressive strength from the concrete allowing it to be utilized for road facility of which standard compressive strength of design is under 24MPa.

Adsorption of CO2 on Monoethanol Amine-Impregnated ZSM5 and MS13X (Monoethanolamine을 함침한 ZSM5와 MS13X의 CO2 흡착특성 비교)

  • Choi, Sung-Woo
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.39 no.6
    • /
    • pp.325-331
    • /
    • 2017
  • Adsorption experiments of carbon dioxide were performed on ZSM5 and Molecular Sieve 13X (MS13X) impregnated with Monoethanol Amine (MEA). Adsorption efficiency of $CO_2$ was investigated in a U type packed column with GC/TCD. The adsorption capacities of adsorbents are estimated in the temperature range of $30-80^{\circ}C$. The modified adsorbents was characterized by BET surface area, $N_2$ adsorption/desorption isotherms, X-ray diffraction and FT-IR. Surface analysis results showed that the impregnation method did not affect the crystallinity of any adsorbents. BET surface area of the MS13X impregnated amine decreased to $19.945m^2/g$ from $718.335m^2/g$. These reults showed that amine molecules were filled with the pore volume in MS13X, as a results restricting access of nitrogen into the pores. The MEA modified MS13X showed improvement in $CO_2$ adsorption capacity over the ZSM5 impregnated with MEA. The MS13X-MEA showed the highest adsorption capacity due to physical adsorption and chemical adsorption by amino-group content. This results also showed that adsorption capacity of MS13X-MEA increases with the temperature range of $60-80^{\circ}C$ compared with pristine MS13X.