• 제목/요약/키워드: Implantable sensors

검색결과 46건 처리시간 0.028초

MICS 표준에 기반한 무선 텔레메트리 시스템 개발 (Development of a wireless telemetry system based on MICS standard)

  • 이승하;박일용
    • 센서학회지
    • /
    • 제18권1호
    • /
    • pp.63-71
    • /
    • 2009
  • It is said that the desirable bio-signal measurement and stimulation system should be an implantable type if the several problems such as biocompatibility, electrical safety, and so on are overcome. In addition to the biocompatibility issue, a robust RF communication and a stable electrical power source for the implantable bio-signal measurement and stimulation system are very important matters. In this paper, a wireless telemetry system which adopts the FCC's approved MICS (medical implant communication service) protocol and a wireless power transmission has been proposed. The proposed system composed of a base station (BS) and an implantable medical device (IMD) has the advantages that the interference with other RF devices can be reduced by the use of the specially assigned MICS frequency band of 402.MHz to 405 MHz. Also, the proposed system includes various functions of a multi-channel bio-signal acquisition and an electric stimulation. Since the electrical power for the IMD can be provided by the inductive link between PCB patterned coils, the IMD needs no battery so that the IMD can be smaller size and much less dangerous than the active type IMD which includes the internal battery. Finally, the validity as a wireless telemetry system has been demonstrated through the experiments by using the implemented BS and IMD.

저작운동으로 인한 진동 잡음 신호의 경감을 위한 측두골 이식형 마이크로폰의 설계 (The Design of Temporal Bone Type Implantable Microphone for Reduction of the Vibrational Noise due to Masticatory Movement)

  • 우승탁;정의성;임형규;이윤정;성기웅;이정현;조진호
    • 센서학회지
    • /
    • 제21권2호
    • /
    • pp.144-150
    • /
    • 2012
  • A microphone for fully implantable hearing device was generally implanted under the skin of the temporal bone. So, the implanted microphone's characteristics can be affected by the accompanying noise due to masticatory movement. In this paper, the implantable microphone with 2-channels structure was designed for reduction of the generated noise signal by masticatory movement. And an experimental model for generation of the noise by masticatory movement was developed with considering the characteristics of human temporal bone and skin. Using the model, the speech signal by a speaker and the artificial noise by a vibrator were supplied simultaneously into the experimental model, the electrical signals were measured at the proposed microphone. The collected signals were processed using a general adaptive filter with least mean square(LMS) algorithm. To confirm performance of the proposed methods, the correlation coefficient and the signal to noise ratio(SNR) before and after the signal processing were calculated. Finally, the results were compared each other.

비선형 연립방정식에 의한 체내 삽입형 초소형 텔레메트리 모듈의 3차원 위치추적 방법 (The Method for 3-D Localization of Implantable Miniaturized Telemetry Module by Analysis of Nonlinear Differential Equations)

  • 박종철;남혜원;박희준;송병섭;원철호;이승하;최현철;조진호
    • 센서학회지
    • /
    • 제12권6호
    • /
    • pp.249-257
    • /
    • 2003
  • 환자의 체내에 삽입하여 여러 가지 생체정보를 무선으로 전송하는 형태의 텔레메트리 기술은 환자들의 불편함을 해소하고 기존의 진단 한계를 극복하는데 큰 기여를 할 것으로 기대되고 있다. 체내에서 생체신호를 외부의 전송하는 시스템의 경우, 정확한 질병지점을 판단하기 위해서는 체내의 텔레메트리 모듈의 위치를 체외에서 정착하게 파악할 수 있는 기술이 필수적이다. 본 논문에서는 8개의 안테나를 고정된 위치에 두고, 비선형 연립방정식의 해석을 통하여 체내에 삽입된 송신모듈의 위치를 결정하는 방법을 제안하고 해석하였다.

생체 신호처리를 위한 다채널 텔레미터용 IC 설계 (Design of Multichannel Telemetering IC for Physiological Signals)

  • 박종대;서희돈;최세곤
    • 센서학회지
    • /
    • 제1권2호
    • /
    • pp.147-154
    • /
    • 1992
  • 본 논문은 생체 신호를 얻기 위한 생체삽입형 8-채널 바이오텔레메트리 시스템을 설계하였다. 본 시스템의 내부회로는 가능한 한 소형이고 저소비 전력화하였을 뿐만아니라 synchronization gap을 주기로 생채신호의 연속측정을 가능하도록 설계하였다. 본 시스템의 주된 기능은 생체신호 연속측정과 외부회로의 적절한 명령에 의해 생체 삽입 전지를 On, off하여 소비전력을 줄일 수 있도록 하였다. 또한 체내 삽입시스템을 집적화하기 위해 람다룰을 기본으로 한 $2{\mu}m$ n-well 설계규칙에 의해 레이아웃을 수행하였다. 그러므로 국내에서 개발되고 있는 압력센서나 ISFET 등을 본 시스템과 함께 삽입하여 생체신호, 즉 심전도, 혈류량, 혈압 등을 측정해 외부로 전송하는 의용 텔레메트리 시스템이 기대된다.

  • PDF

이식형 마이크로폰과 진동체를 갖는 인공중이의 이득 보상을 위한 주파수 특성 고찰 (Study on frequency response of implantable microphone and vibrating transducer for the gain compensation of implantable middle ear hearing aid)

  • 정의성;성기웅;임형규;이장우;김동욱;이정현;김명남;조진호
    • 센서학회지
    • /
    • 제19권5호
    • /
    • pp.361-368
    • /
    • 2010
  • ACROSS device, which is composed of an implantable microphone, a signal processor, and a vibrating transducer, is a fullyimplantable middle ear hearing device(F-IMEHD) for the recovery of patients with hearing loss. And since a microphone is implanted under skin and tissue at the temporal bones, the amplitude of the sound wave is attenuated by absorption and scattering. And the vibrating transducer attached to the ossicular chain caused also the different displacement from characteristic of the stapes. For the gain control of auditory signals, most of implantable hearing devices with the digital audio signal processor still apply to fitting rules of conventional hearing aid without regard to the effect of the implanted microphone and the vibrating transducer. So it should be taken into account the effect of the implantable microphone and the vibrating transducer to use the conventional audio fitting rule. The aim of this study was to measure gain characteristics caused by the implanted microphone and the vibrating transducer attached to the ossicle chains for the gain compensation of ACROSS device. Differential floating mass transducers (DFMT) of ACROSS device were clipped on four cadaver temporal bones. And after placing the DFMT on them, displacements of the ossicle chain with the DFMT operated by 1 $mA_{peak}$ current was measured using laser Doppler vibrometer. And the sensitivity of microphones under the sampled pig skin and the skin of 3 rat back were measured by stimulus of pure tones in frequency from 0.1 to 8.9 kHz. And we confirmed that the microphone implanted under skin showed poorer frequency response in the acoustic high-frequency band than it in the low- to mid- frequency band, and the resonant frequency of the stapes vibration was changed by attaching the DFMT on the incus, the displacement of the DFMT driven with 1 $mA_{rms}$ was higher by the amount of about 20 dB than that of cadaver's stapes driven by the sound presssure of 94 dB SPL in resonance frequency range.

바이오 텔레메-터용 CMOS Custom LSI 제작 (Fabrication of CMOS Custom LSI for Implantable Biotelemeter)

  • 서희돈;최세곤
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1987년도 전기.전자공학 학술대회 논문집(II)
    • /
    • pp.1305-1308
    • /
    • 1987
  • This paper presents a design of an optimized implantable biotelemetry system and the fabrication of custom CMOS LSI for implementing this system. The internal circuits of this system are fabricated on a single silicon chip with a size of $4{\times}5mm^2$. This LSI is designed and fabricated not only to get as small size and low power dissipation as possible, but also to have multiple function. Its main functions are to select one of implanted sensors and to accomplish ON - OFF power switching of an implanted battery by receiving appropriate Command signals and control signals fran external circuits. The internal system which was assembled on a bread-board using fabricated LSI chip is confirmed to work as designed. The total power dissipation of this interal system was $10.12{\mu}W$.

  • PDF

이식형 인공중이를 위한 압전 플로팅 매스 트랜스듀서의 제안 (Proposal of a piezoelectric floating mass transducer for implantable middle ear hearing devices)

  • 이창우;김민규;박일용;송병섭;노용래;조진호
    • 센서학회지
    • /
    • 제14권5호
    • /
    • pp.322-330
    • /
    • 2005
  • A new type of transducer, piezoelectric floating mass transducer (PFMT) which has advantages of piezoelectric and electromagnetic transducer has been proposed and implemented for the implantable middle ear hearing devices. By the uneven bonding of piezoelectric material to the inner bottom of transducer case, the PFMT can vibrate back-and-forth along the longitudinal axis of the transducer even though the piezoelectric material within the cylindrical case produces only the bilateral expansion and contraction according to the applied electrical signal. To improve efficiency of the PFMT, the multi-layered piezoelectric material has been adapted. The small number of components in the PFMT enables the simple manufacturing and the easy implanting into the middle ear. In order to examine the characteristics of vibration, mechanical modeling and finite element analyses of the proposed transducer have been performed. From the result of theoretical analyses and the measured data from the experiment, it is verified that the implemented PFMT can be used in implantable middle ear hearing devices.

Cutting-edge Piezo/Triboelectric-based Wearable Physical Sensor Platforms

  • Park, Jiwon;Shin, Joonchul;Hur, Sunghoon;Kang, Chong-Yun;Cho, Kyung-Hoon;Song, Hyun-Cheol
    • 센서학회지
    • /
    • 제31권5호
    • /
    • pp.301-306
    • /
    • 2022
  • With the recent widespread implementation of Internet of Things (IoT) technology driven by Industry 4.0, self-powered sensors for wearable and implantable systems are increasingly gaining attention. Piezoelectric nanogenerators (PENGs) and triboelectric nanogenerators (TENGs), which convert biomechanical energy into electrical energy, can be considered as efficient self-powered sensor platforms. These are energy harvesters that are used as low-power energy sources. However, they can also be used as sensors when an output signal is used to sense any mechanical stimuli. For sensors, collecting high-quality data is important. However, the accuracy of sensing for practical applications is equally important. This paper provides a brief review of the performance advanced by the materials and structures of the latest PENG/TENG-based wearable sensors and intelligent applications applied using artificial intelligence (AI)

지속적인 심장질환 모니터링을 위한 인체 삽입형 생체 센서의 무선전력전송 시스템 (Development and Application of Wireless Power Transmission Systems for Wireless ECG Sensors)

  • 허진철;이종하
    • 융합신호처리학회논문지
    • /
    • 제20권2호
    • /
    • pp.111-117
    • /
    • 2019
  • 전자기 유도형 무선전력전송에서는 송신 코일과 수신 코일의 상대적 위치에 따른 자기장 분포와 동력 전달 효율이 매우 중요하다. 본 연구는 ECG 센서를 사용한 HFSS 시뮬레이션 결과를 실제 측정 결과와 비교하였다. 시뮬레이션 결과 송신 코일과 수신 코일 간의 정렬이 어느 정도 변경 되더라도 전송효율은 비교적 안정적으로 유지 될 수 있음이 나타났다. 수신 코일의 중심이 송신 코일의 중심과 완벽하게 일치하면 전송효율이 최대가 되며, 수신 코일의 중심이 송신 코일의 중심으로부터 ± 10mm 내의 이동은 전송효율의 감소가 크지 않음을 확인 하였으며, 무선 전력 전송 시스템의 성능이 크게 저하되지 않는 것으로 확인 되었다. 본 결과는 이식형 센서를 위한 무선 전력의 활용에서 무선 전송의 표준화 된 적용 방법을 제안한다. 이를 통해 이식형 임플란트의 개발에 있어 무선전력전송에 대한 기준을 제시하고, 관련 디바이스의 개발에 적용 할 수 있을 것으로 판단된다.

압전 나노발전기: 에너지 수확 기술 (Piezoelectric Nanogenerators: Energy Harvesting Technology)

  • 신동명;황윤회
    • 진공이야기
    • /
    • 제3권2호
    • /
    • pp.17-20
    • /
    • 2016
  • Piezoelectric nanogenerators are energy harvesting device to convert a mechanical energy into an electric energy using nanostructured piezoelectric materials. This review summarizes works to date on piezoelectric nanogenerators, starting with a basic theory of piezoelectricity and working mechanism, and moving through the reports of numerous nanogenerators using nanorod arrays, flexible substrates and alternative materials. A sufficient power generated from nanogenerators suggests feasible applications for either power supplies or strain sensors of highly integratedl nano devices. Further development of nanogenerators holds promise for the development of self-powered implantable and wearable electronics.