• Title/Summary/Keyword: Implantable FES

Search Result 2, Processing Time 0.014 seconds

Implantable Functional Electrical Stimulation with Inductive Power and Data Transmission System (유도전력전송방식의 이식형 기능적 전기자극)

  • Lee, Joon-Ha
    • Journal of Yeungnam Medical Science
    • /
    • v.24 no.2
    • /
    • pp.97-106
    • /
    • 2007
  • Functional electrical stimulation (FES) has developed over the last 35 years to become a scientifically, technologically and clinically recognized field of interest in clinical medicine. FES has been applied to locomotion, grasping, ventilation, incontinence, and decubitus healing. However, all of these achievements illustrate the initial applications of FES; its true potential has not yet been realized. Recently, FES systems, which are miniaturized stimulation devices, have been utilized in the clinical setting. However, because the stimulating electrodes of the current FES devices are percutaneous electrodes, which are susceptible to wire breakage, and skin infection an implantable FES stimulating electrode has been introduced in the U.S. and Japan. In the present study, an external power supply method using radio frequency (RF) coupling and data transmission was developed for the control of the implantable FES device. In addition, we review the current understanding of FES devices and their application in clinical medicine.

  • PDF

A 16-channel Neural Stimulator IC with DAC Sharing Scheme for Artificial Retinal Prostheses

  • Seok, Changho;Kim, Hyunho;Im, Seunghyun;Song, Haryong;Lim, Kyomook;Goo, Yong-Sook;Koo, Kyo-In;Cho, Dong-Il;Ko, Hyoungho
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.14 no.5
    • /
    • pp.658-665
    • /
    • 2014
  • The neural stimulators have been employed to the visual prostheses system based on the functional electrical stimulation (FES). Due to the size limitation of the implantable device, the smaller area of the unit current driver pixel is highly desired for higher resolution current stimulation system. This paper presents a 16-channel compact current-mode neural stimulator IC with digital to analog converter (DAC) sharing scheme for artificial retinal prostheses. The individual pixel circuits in the stimulator IC share a single 6 bit DAC using the sample-and-hold scheme. The DAC sharing scheme enables the simultaneous stimulation on multiple active pixels with a single DAC while maintaining small size and low power. The layout size of the stimulator circuit with the DAC sharing scheme is reduced to be 51.98 %, compared to the conventional scheme. The stimulator IC is designed using standard $0.18{\mu}m$ 1P6M process. The chip size except the I/O cells is $437{\mu}m{\times}501{\mu}m$.