• Title/Summary/Keyword: Implant-tooth distance

Search Result 32, Processing Time 0.02 seconds

Accuracy of implant digital scans with different intraoral scanbody shapes and library merging according to different oral exposure height (구내 스캔바디의 형태에 따른 임플란트의 디지털 스캔 정확도 및 구강 내 노출 높이에 따른 라이브러리 중첩 정확도 비교 연구)

  • Jeong, Byungjoon;Lee, Younghoo;Hong, Seoung-Jin;Paek, Janghyun;Noh, Kwantae;Pae, Ahran;Kim, Hyeong-Seob;Kwon, Kung-Rock
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.59 no.1
    • /
    • pp.27-35
    • /
    • 2021
  • Purpose: The purpose of this study is to compare the accuracy of digital scans of implants according to different shapes of scanbodies, and to compare the accuracy of library merging according to different oral exposure height. Materials and methods: A master model with a single tooth edentulous site was prepared. For the first experiment, three types of intraoral scanbodies were prepared, divided into three groups, and the following experiments were conducted for each group: An internal hex implant was placed. The master model with the scanbody connected was scanned with a model scanner, and a master reference file (control group) was created. 10 files (experimental group) were created by performing 10 consecutive scans with an intraoral scanner. After superimposing the control and experimental groups, the following values were calculated: 1) Distance deviation of a designated point on the scanbody 2) Angle deviation of the major axis of the scanbody. For the second experiment, the scanbody scan data were prepared in 6 different heights. Library files were merged with each of the scan data. The distance and angular deviation were calculated using the 7 mm scan data as control group. Results: In the first experiment, there were no significant differences between A and B (P=.278), B and C (P=.568), and C and A (P=.711) in the distance deviations. There were no significant differences between A and B (P=.568), B and C (P=.546), and C and A (P=.112) in the angular deviations. Also, the scanbody showed significantly higher library merging accuracy in the groups with high oral exposure height (P<.5). Conclusion: There were no significant differences in scan accuracy according to the different shapes of scanbodies, and the accuracy of library merging increased according to exposure height of the scanbody in the oral cavity.

Effect of NaF iontophoresis and Nd:YAG laser irradiation on the abrasion-resistance of root surface (불화나트륨 이온도포와 Nd:YAG laser 조사가 치근면 내마모성에 미치는 영향)

  • Kim, Chin-Dok;Yum, Chang-Yup;Kim, Song-Uk;Kim, Byung-Ock;Han, Kyung-Yoon
    • Journal of Periodontal and Implant Science
    • /
    • v.27 no.4
    • /
    • pp.819-828
    • /
    • 1997
  • The purpose of this study was to evaluate the abrasion-resistance of root surface after NaF iontophoresis, Nd:YAG laser irradiation and combined treatment 50 anterior teeth with flat interproximal root surface that had been extracted due to periodontal destruction were selected. All teeth were treated by the same procedure as conventional periodontal root treatment, such as scaling and root planing, root conditioning with tetracycline HCI(lOOmg/ml, 5min). The pre-treatment weight of each tooth was measured by a dial scale(SHIMADEU Co, LIBROR EB-220HU, capacity 220.000 g, Japan). All teeth were divided into 5 groups as follows: Nd:YAG laser irradiation(group 1, 1 W, 100 mJ, 10Hz, fiberoptic-root surface distance=5mm, $10\;sec.{\times}6times$, EL.EN.EN060, Italy): NaF iontophoresis(group 2, $150{\mu}A$, 4 min}: Nd:YAG laser irradiation following NaF iontophoresis(group 3): NaF iontophoresis following Nd:YAG laser irradiation(group 4): No treatment(control group). Electric toothbrushing (Oral-B, Brown Co, Germany) was conducted during 1 hour($lO\;min.{\times}6\;times$). Subsequently post-treatment weight was remeasured by the same method as pre-treatment weight measurement. The difference of abrasion rate among all groups was statistically analyzed by ANOVA(SAS program). Following results were obtained: 1. The abrasion rate was significantly lower in Nd:YAG laser irradiation group than NaF iontophoresis group(p < 0.001). 2. The abrasion rate was significantly lower in combined groups of Nd:YAG laser irradiation and NaF iontophoresis than either Nd:YAG laser irradiation group or NaF iontophoresis group(p < 0.001). 3. There was no significant difference in abrasion rate according to application order in the combined groups(p > 0.05). 4. The abrasion rate was significantly lower in all experimental groups than control group(p < 0.001). The results suggest that combined treatment of Nd:YAG laser irradiation and NaF iontophoresis on exposed root surface after periodontal therapy can enhance the abrasion-resistance of root surface and may inhibit the root caries development.

  • PDF