• Title/Summary/Keyword: Implant-supported overdenture

Search Result 81, Processing Time 0.029 seconds

Implant Supported Overdenture using Locator$^{(R)}$ System on Mandibular Edentulous Patient (하악 무치악 환자에서 Locator$^{(R)}$를 이용한 임플란트 피개의치 수복 증례)

  • Yu, Jung-Hyun;Shin, Soo-Yeon
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.28 no.4
    • /
    • pp.397-406
    • /
    • 2012
  • Loss of tooth results in remodeling and resorption of surrounding alveolar bone which causes atrophic edentulous ridge and gradually decreasing gingival attachment. As a result, edentulous patients face difficulty in using dentures due to pain, decrease of support, decline of masticatory efficiency of complete denture. To improve this, overdenture with implant in the mandible and attachment are considered as a treatment of choice as a favorable treatment. In this case, a patient with edentulous ridge for long period is rehabilitated by complete denture in maxilla and implant overdenture using Locator$^{(R)}$ attachment in mandible.

Mandibular implant-supported overdenture using CAD-CAM Konus type attachment: A case report (CAD-CAM Konus type 부착장치를 이용한 하악 임플란트 피개의치 보철수복 증례)

  • Park, Jong-Hee;Kim, In-Ju;Kim, Kyoung-A;Song, Kwang-Yeob;Seo, Jae-Min
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.54 no.3
    • /
    • pp.259-266
    • /
    • 2016
  • In edentulous mandible, implant supported overdenture was considered as a first treatment option. Konus type attachment supplies rigid support and cross arch stabilization so that more favorable force transmission and distribution can be attained. In the dentistry, computer aided design-computer aided manufacturing (CAD-CAM) system makes it possible to fabricate restorations with high precision and effectiveness. Recently, Palladium-silver (Pd-Ag) alloy which is millable has been developed. This article presents that application of CAD-CAM Konus type attachment can be provide satisfactory stability and function on four-implant supported mandibular overdenture.

Implant overdenture treatment using Locator attachment system on edentulous patient (무치악 환자에서 로케이터 부착장치를 이용한 임플란트 피개의치 수복 증례)

  • Kim, Soo-Yeop;Shin, Soo-Yeon
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.30 no.2
    • /
    • pp.176-183
    • /
    • 2014
  • Severely absorbed edentulous ridge cannot bear mechanical stress, causes undesired transformation of oral environment and makes patients difficult to adapt to dentures. Nowadays implant overdenture can be a treatment of choice in order to relieve patients' discomfort and improve stability and retention of the denture. Placement of implant on maxilla is difficult because of its bone quality and anatomic structure. It also has wide supportive tissue and convenience of border sealing, which provides sufficient support and stabilization with conventional complete denture. Mandible, on the other hand, is difficult to obtain sufficient support, retention and stabilization with conventional complete denture. Therefore, implant overdenture is recommended on mandible. Locator attachment has been improved for convenience of use and male parts of various retention enabled it to replace ball type attachment clinically. In this study, we restored maxillary arch with conventional denture, and mandibular arch with implant and tissue-supported overdenture and Locator attachment system.

Finite Element Analysis of Stress Distribution on Telescopic System for Mandibular Implant Supported Overdenture (이중관 구조 하악 임플랜트 피개의치의 응력 분포에 관한 유한요소법적 분석)

  • Oh, Jung-Ran;Woo, Yi-Hyung;Lee, Sung-Bok;Bak, Jin
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.46 no.4
    • /
    • pp.359-371
    • /
    • 2008
  • Purpose: The purpose of this study was to investigate the stress distribution in mandibular implant overdentures with telescopic crowns compared to bar attachment. Material and methods: Three-dimensional finite element models consisting of the mandibular bone, 4 implants, and primary bar-splinted superstructure or secondary splinted superstructure with telescopic crowns were created. Vertical and oblique loads were directed onto the occlusal areas of the superstructures to simulate the maximal intercuspal contacts and working contacts such as group function occlusion. Maximum stress and stress distribution were analysed in mandibular bone, implant abutments, and superstructures. Results: 1. In comparison of von Mises stress on mandibular bone, telescopic overdenture had a little lower stress values in vertical load and working side load except oblique load. In the mandible, the telescopic overdenture distributed more uniform stress than the bar overdenture. 2. In comparison of von Mises stress on implant abutments, telescopic overdenture had much lower stress values in all load conditions. In implant abutments, the telescopic overdenture distributed stress similar to the bar overdenture. Stress was concentrated on the distal surfaces of the posterior implant abutments in both mandibular overdentures. 3. In comparison of von Mises stress on superstructures, the telescopic overdenture had much more stress values in all load conditions. However, the telescopic overdenture distributed more uniform stress on superstructure than the bar overdenture. In the bar overdenture, stress was concentrated on each cental area of bar structures and connected area between implant abutments and bar structures. Conclusion: In the results of this study, the telescopic overdenture had lower stress values than the bar overdenture in mandibular bone and implant abutments, but more stress values in superstructures. However, if optimal material was selected in making superstructures, the telescopic overdenture was compared to the bar overdenture in stress distribution.

Implants and all-ceramic restorations in a patient treated for aggressive periodontitis: a case report

  • Hong, Jin-Sun;Yeo, In-Sung;Kim, Sung-Hun;Lee, Jai-Bong;Han, Jung-Suk;Yang, Jae-Ho
    • The Journal of Advanced Prosthodontics
    • /
    • v.2 no.3
    • /
    • pp.97-101
    • /
    • 2010
  • A 23-year-old female with aggressive periodontitis was treated using dental implants and LAVA system. The severely compromised teeth were extracted irrespective of initial conservative periodontal treatment. An implant-supported overdenture with 4 implants was fabricated for the maxilla and all-ceramic restorations for the mandible. Esthetic and functional goals were achieved with team approach involving periodontists and prosthodontists. This case report describes a treatment procedure for a generalized aggressive periodontitis patient with severe bone resorption.

FINITE ELEMENT ANALYSIS OF THE EFFECT OF CANTILEVER AND IMPLANT ORIENTATION ON STRESS DISTRIBUTION IN A MANDIBULAR IMPLANT-SUPPORTED BAR OVERDENTURE (하악피개의치에서 임플랜트의 식립각도에 따른 칸틸레버 길이의 감소효과가 응력분포 양상에 미치는 영향 -삼차원 유한요소법을 이용한 분석-)

  • Park, Jun-Soo;Lee, Sung-Bok;Kwon, Kung-Rock;Woo, Yi-Hyung
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.45 no.4
    • /
    • pp.444-456
    • /
    • 2007
  • Statement of problem: Implant inclination and cantilever loading increse loads distributed to implants, potentially causing biomechanical complications. Controversy exists regarding the effect of the intentionally distal-inclined implant for the reduction of the cantilever length. Purpose: This study investigated the stress distribution at the bone/implant interface and prostheses with 3D finite element stress analysis by using four different cantilever lengths and implant inclinations in a mandibular implant-supported bar overdenture. Material and methods: Four 3-D finite element models were created in which 4 implants were placed in the interforaminal area and had four different cantilver lengths(10, 6.9, 4 and 1.5mm) and distal implant inclinations$(0^{\circ},\;15^{\circ},\;30^{\circ}\;and\;45^{\circ})$ respectively. Vortical forces of 120N and oblique forces of 45N were applied to the molar area. Stress distribution in the bone around the implant was analysed under different distal implant inclinations. Results: Analysis of the von Mises stresses for the bone/implant interfaces and prostheses revealed that the maximum stresses occurred at the most distal bone/implant interface and the joint of bar and abutment, located on the loaded side and significantly incresed with the implant inclinations, especially over $45^{\circ}$. Conclusion: Within the limitations of this study, it was suggested that too much distal inclination over 45 degrees can put the implant at risk of overload and within the dimension of the constant sum of a anterior-posterior spread and cantilever length, a distal implant inclination compared to cantilever length had the much larger effect on the stress distribution at the bone/implant interface.