• Title/Summary/Keyword: Implant Treatment

Search Result 1,621, Processing Time 0.025 seconds

The effects of a combination of calcium sulfate and platelet-derived growth factor on periodontal ligament cells in vitro (Calcium sulfate와 혈소판 유래성장인자의 혼합사용이 치주인대세포에 미치는 영향)

  • Kim, Jun-Seong;Choi, Seong-Ho;Yu, Yun-Jung;Chai, Jung-Kiu;Kim, Chong-Kwan;Cho, Kyoo-Sung
    • Journal of Periodontal and Implant Science
    • /
    • v.27 no.4
    • /
    • pp.785-804
    • /
    • 1997
  • It was well known that calcium sulfate was biocompatible, resorbed rapidly in the body, had potential as a good barrier membrane. Platelet-derived growth factor(PDGF) was one of polypeptide growth factor that had been reported as a biological mediator which regulates activities of wound healing process including the cell proliferation, migration and metabolism. The purpose of this study was to evaluate the effects of a combination of calcium sulfate and PDGF on periodontal ligament cells in vitro to use as a regeneration promoting agent of periodontal tissue. Human periodontal ligament cells were prepared from the premolar tooth extracted for the orthodontic treatment. Cells were cultured in ${\alpha}-MEM$ contained with 20% FBS, at the $37^{\circ}C$, 100% of humidity, 5% $Co_2$ incubator. Cells were inoculated and cultured into 96 well culture plate with $1{\times}10^4cells/well$ of ${\alpha}-MEM$ for 1 day. After discarding the medium, those cells were cultured in ${\alpha}-MEM$ contained with 10% FBS alone(control group), in calcium sulfate(calcium sulfate group), in calcium sulfate treated with 15ng/ml of PDGF-BB(calcium sulfate+PDGF group), in ${\alpha}-MEM$ contained with 10% FBS treated with 15ng/ml of PDGF-BB(PDGF group) for 1, 2, 3 day respectively. And then each group was characterized by examining of the cell counting, MTT assay, collagen synthesis. The results were as follows. 1. In the analysis of cell proliferation by cell counting, both calcium sulfate group and calcium sulfate plus PDGF group showed no stastically significant difference compared to control group, but there was stastically significant difference between PDGF group and calcium sulfate group at 1, 2 day(P<0.05). 2. In the analysis of cell proliferation by MTT assay in calcium sulfate extracts, both calcium sulfate group and calcium sulfate plus PDGF group showed no stastically significant difference compared to control group, but there was stastically significant difference between PDGF group and calcium sulfate group at 2, 3 day, and between calcium sulfate plus PDGF group and calcium sulfate group at 2 day(P

  • PDF

The effect of dexamethasone on the gene expression of the bone matrix protein in the periodontal ligament cells (치주인대세포의 골기질 단백질 유전자 발현에 대한 Dexamethasone의 영향)

  • Chung, Ha-Bong;Park, Jin-Woo;Suh, Jo-Young
    • Journal of Periodontal and Implant Science
    • /
    • v.32 no.3
    • /
    • pp.445-456
    • /
    • 2002
  • The purpose of this study were to determine that dexamethasone(Dex) induces differentiation of periodontal ligament(PDL) cells to osteoblastic cells and to investigate expression of matrix Gla protein(MGP), which is one of bone matrix protein. The isolated human PDL cells and gingival fibroblasts were prepared and cultured. The fourth or sixth sub-passage cells were used in this experiments. control group, ascorbic acid and ${\beta}$-glycerophosphate treated group, ascorbic acid, ${\beta}$-glycerophosphate and l00nM Dex treated group, ascorbic acid, ${\beta}$-glycerophosphate, and 5 ${\mu}M$ Dex treated group were made for study. The results were as follows: Cellular morphological change of PDL cells according to time was investigated. At first, the cells exhibited confluent monolayer of spindle or polygonal appearance. The multilayer of cells were seen after 7 days of treatment. After 14 days, the cells lost polarity and were densely packed. The mineralized nodule formation was seen at 21 days in the only Dex treated PDL cell groups. In the gingival fibroblast groups and no Dex treated PDL cell groups, the mineralized nodule was not seen. The mineralized nodule formation of 5 ${\mu}M$ Dex treated group was higher than 100 nM Dex treated group. Alkaline phosphatase(ALP) activity was higher in the Dex treated PDL cell groups of 14 and 21 days than 0 and 7 days. MGP was expressed in the control and all experimental groups and the expression was constant at 0,7,14,21 day. The above results confirm that Dex is affected to differentiation of the PDL cells to osteoblastic or cementoblastic cells and has dose-dependent effect for mineralization. And, MGP is expressed in the PDL cells and is not affected to mineralization of PDL cells.

The effect of safflower seed fraction extract on periodontal ligament fibroblast and MC3T3-E1 cell in vitro (홍화씨 분획 추출물이 치주인대 섬유아세포와 MC3T3-E1 세포에 미치는 영향)

  • Huh, Ji-Sun;Kang, Jung-Hwa;Yoo, Yun-Jung;Kim, Chang-Sung;Cho, Kyoo-Sung;Choi, Seong-Ho
    • Journal of Periodontal and Implant Science
    • /
    • v.31 no.4
    • /
    • pp.833-846
    • /
    • 2001
  • Recently, use of natural medicine is getting more attention, and some of them are believed to be effective in the treatment of periodontitis. Among them, the seeds of safflower(Carthamus tinctrorius L.) have been proven to be effective through its use in bone diseases such as fracture and osteoporosis. During the last few years, studies using the seeds of safflower gown in Korea have been active, and it has been reported that safflower seed extract increase the proliferation and the alkaline phosphatase(ALP) activity of human periodontal ligament fibroblast(hPDLF), osteoblast, and that they promote the mineralization process. In animal studies, when safflower seed extract were administered orally new bone formation was promoted. Recently, in an effort to find out the most effective osteogenic components, among many components of the safflower seed, various safflower seed fraction extracts were obtained by multistep extraction of the safflower components using various solvents. Among these, saf-M-W fraction extracted by methanol and water was most effective in increasing osteogenic potential of osteoblasts. In this study, the effect of safflower seed fraction extract, saf-M-W, on the growth and differentiation of hPDLF and MC3T3-E1 cell was investigated. The toxicity of saf-M-W on both cells was measured using M'IT(3-(4,5dimethylthiazol-2-y1)-2,5-diphenyl tetrazolium bromide) test, and ALP activity was measured using the colorimetric assay of hPDLF. In addition, in MC3T3-El cells, the expression of ALP, bone sialoprotein(BSP) mRNA was observed using Northern blot, and the mineralized nodule formation Was observed using von Kossa stain and phase-contrast microscope. 1. In concentrations below $10{\mu}g/ml$, saf-M-W didn't show any toxicity on hPDLF and MC3T3-El cell. 2. The change in saf-M-W concentration had no effect on the ALP activity of hPDLF. 3. In MC3T-E1 cells, mRNA expressions of ALP and BSP were greater in the experimental group treated with $10{\mu}g/ml$ concentration of saf-M-W compared with the control group. 4. In MC3T3-El cells, abundance of mineralized nodules were formed in the experimental group treated with $10{\mu}g/ml$ Concentration of saf-M-W, while no mineralized nodule was formed in the control group. These results suggest that safflower seed fraction extract, saf-M-W. didn't show any toxicity on hPDLF and MC3T3-E1 cell at concentrations below $10{\mu}g/ml$ and effectively enhanced the differentiation and osteogenic potential of MC3T3-El cell.

  • PDF

The Effect of Safflower Seed Extract on the Bone Formation of Calvarial Bone Model in Sprague Dawley rat (백서 두개골 결손부에서 홍화씨 추출물의 골조직 재생 유도 효과)

  • Kim, Sung-Tae;Jhon, Gil-Ja;Lim, So-Hyoung;Cho, Kyoo-Sung;Kim, Chong-Kwan;Choi, Seong-Ho
    • Journal of Periodontal and Implant Science
    • /
    • v.30 no.4
    • /
    • pp.835-852
    • /
    • 2000
  • The ultimate goal of periodontal therapy is the regeneration of periodontal tissue and repair of function. For more than a decade there have been many efforts to develop materials and methods of treatment to promote periodontal wound healing. Recently many efforts are concentrated on the regeneration potential of material used in oriental medicine. In some in vitro and in vivo experiments, there have been many evidences that these materials have an effect on bone regeneration. The purpose of this study was to evaluate histologically and radiologically in Sprague-Dawley rats the effects of safflower seed extracts on the regeneration of the calvarial defects surgically produced. So in this study, the critical size defects were surgically produced in the calvarial bone of 30 Sprague-Dawley rats using the 8mm trephine bur. The safflower seed extract was applied into the defect of each rat in experimental group, whereas nothing was applied into the defect of each rat in control group. Rats were sacrificed at 2, 4, 8 weeks following operation and histomorphometric and radiodensitometric analysis were performed. 1. The newly formed bone length was $102.91{\pm}22.05$, $178.29{\pm}24.40$ at 2 week in the each control, experimental group, $130.95{\pm}39.24$, $242.62{\pm}50.33$ at 4 week and $181.53{\pm}76.35$, $240.36{\pm}22.00$ at 8 week($unit,{\mu}m$). In the 2, 4 week, there were statistically significant difference between control and experimental group(P<0.05). 2. The newly formed bone area was $2962.06{\pm}1284.48$, $10648.35{\pm}1284.48$ at 2 week, $5103.25{\pm}1375.88$, $9706.78{\pm}1481.81$ at 4 week, $8046.02{\pm}818.99$, $12057.06{\pm}740.47$ at 8 week($unit,{\mu}m^2$). In every week, there were statistically significant difference between control and experimental group(P<0.05). 3. The radiopacity was $14.26{\pm}.33$, $25.47{\pm}4.33$ at 2 week, $20.06{\pm}9.07$, $26.61{\pm}2.78$ at 4 week, $22.99{\pm}3.76$, $27.29{\pm}1.54$ at 8 week(unit, %). In the 2 week, there was statistically significant difference between control and experimental group(P<0.05). In conclusion, the results of the present study suggest that safflower seed extract initially has an effect on the newly formed bone area, length and radiopacity when it is applied to the calvarial defect of Sprague - Dawley rat. Then. the material has an effect on newly formed bone area and length.

  • PDF

The Bone regenerative effects of tetracycline blended chitosan membranes on the calvarial critical size defect in Sprague dawley rats (백서 두개골 결손부에서 항생제를 함유한 키토산 차단막의 골재생 유도 효과)

  • Chae, Gyung-Joon;Kim, Tae-Gyun;Jung, Ui-Won;Lee, Soo-Bok;Jung, Yong-Sik;Lee, Yong-Keun;Kim, Chang-Sung;Chae, Jung-Kiu;Cho, Kyoo-Sung;Kim, Chong-Kwan;Choi, Seong-Ho
    • Journal of Periodontal and Implant Science
    • /
    • v.35 no.4
    • /
    • pp.1019-1037
    • /
    • 2005
  • The major goals of periodontal therapy are the functional regeneration of periodontal supporting structures already destructed by periodontal disease as well as the reduction of signs and symptoms of progressive periodontal disease. There have been many efforts to develop materials and therapeutic methods to promote periodontal wound healing. There have been increasing interest on the chitosan made by chtin. Chitosan is a derivative of chitin made by deacetylation of side chains. Chitosan has been widely studied as bone substitution and membrane material in periodontology. Many experiments using chitosan in various animal models have proven its beneficial effects. Tetracycline has been considered for use in the treatment of chronic periodontal disease and gingivitis. The aim of this study is to evlauate the osteogenesis of tetracycline blended chitosan membranes on the calvarial critical size defect in Sprague Dawley rats. An 8mm surgical defect was produced with a trephine bur in the area of the midsagittal suture. The rats were divided into five groups: Untreated control group versus four experimental group. Four types of membranes were made and comparative study was been done. Two types of non-woven membranes were made by immersing non-woven chitosan into either the tetracycline solution or chitosan-tetracycline solution. Other two types of sponge membranes were fabricated by immersing chitosan sponge into the tetracycline solution, and subsequent freeze-drying. The animals were sacrificed at 2 and 8 weeks after surgical procedure. The specimens were examined by histologic analyses. The results are as follows: 1. Clinically the use of tetracycline blended chitosan membrane showed great healing capacity. 2. The new bone formations of all the experimental group, non-woven and sponge type membranes were greater than those of control group. But, there was no significant difference between the experimental groups. 3. Resorption of chitosan membranes were not shown in any groups at 2 weeks and 8 weeks. These results suggest that the use of tetracycline blended chitosan membrane on the calvarial defects in rats has significant effect on the regeneration of bone tissue in itself. And it implicate that tetracycline blended chitosan membrane might be useful for guided tissue regeneration.

Effects of $TGF-{\beta}1$ on Cellular Activity of Minocycline-Pretreated Human Periodontal Ligament Cells (($TGF-{\beta}$)이 Minocycline을 전처리한 사람 치주인대세포의 활성에 미치는 영향)

  • Yang, Seung-Oh;You, Hyung-Keun;Shin, Hyung-Shik
    • Journal of Periodontal and Implant Science
    • /
    • v.26 no.2
    • /
    • pp.469-490
    • /
    • 1996
  • The initial events required for periodontal regeneration is the attachment, spreading, and proliferation of appropriated cells at the healing sites. These have been reported that minocycline stimulates the attachment of periodontal ligament cells, and also $TGF-{\beta}1$ enhances the proliferation of periodontal ligament cells. The purpose of the present study was to evaluate the effects of $TGF-{\beta}1$ on the cellular activity of minocycline treated human periodontal ligament cells. Periodontal ligament cells were obtained from the explants of healthy periodontal ligaments of extracted 3rd molars or premolar teeth extracted from the patients for orthodontic treatment. The cells were cultured in minimal essential medium(${\alpha}-MEM$) supplemented with 10.000units/ml penicillin, $10,000{\mu}g/ml$ streptomycin and 10% FBS(fetal bovine serum) at $37^{\circ}C$ in a humidified atmosphere of 5% carbon dioxide and the 5th to the 8th passages of the cells were used. To evaluate the effect of minocycline on cell attachment, the cells were seeded at a cell density of $1.5{\times}10^4$ cells/well in 24-well culture plates and treated with $20{\mu}g/ml$ and $100{\mu}g/ml$ of minocycline for 1.5 h. After trypsinization, the cells were counted with hemocytometer and were taken photographs for observation of cellular morphology. To evaluate the effect of $TGF-{\beta}1$ on minocycline-pretreated periodontal ligament cells, the cells were seeded at a cell density of $1{\times}10^4$ cells/ well in 24-well culture plates and treated with $20{\mu}g/ml$ and $100{\mu}g/ml$ of minocycline for 1.5 h. After incubation, 1 and 10ng/ml of $rh-TGF-{\beta}1$ were also added to the each well and incubated for 1 and 2 days, respectively. Then, MTT assay, DNA synthesis($^3H-thymidine\;assay$), and protein and collagen assay(3H-proline assay) were carried out. In the MIT assay, after 200ul MTT solutionlconeentration of 5mg/ml) were added to the each well of the 24-well plates and incubated for 3 hours, and 200 ul DMSO were added so as to dissolve insoluble blue formazan crystals which was formed in incubated period. Then it read plates on a ELISA reader. For mitogenic assay, 1 uCi/ml $^3H-thymidine$ was added to each well for the final 2 hours of the incubation periods. After labeling, the wells were washed 3 times with ice cold PBS and 4 times with 5% TCA to remove unincorporated label and precipitate the cellular DNA. DNA, with the incorporated $^3H-thymidine$, was solubilized with 500 ul of 0.1% NaOH/0.1% SDS. A 250 ul aliquot was removed from each well and placed in a scintillation vial with 4ml of scintillation cocktail. Using an liguid scintillation counter, counts per minute(CPM) were determined for each samples. 3 uCi/ml $^3H-proline$ was added to each well for the final 4 hours of the incubation periods and total protein and percent collagen synthesis were carried out. The results indicate that minocycline treated group with $100{\mu}g/ml$ concentration for 1.5 hours significantly increased than that of control in cell attachment, and cell process is also evident compared with that of control in cell morphology, and the cellular activity and DNA synthesis rate of cells treated minocycline and $TGF-{\beta}1$ significantly increased than that of control values, but were below to values of the $TGF-{\beta}1$ only treated group in MIT assay and $^3H-thymidine\;assay$, and the total protein synthesis of minocycline and $TGF-{\beta}1$ treated group also significantly increased than that of control values, but the percent collagen synthesis of tested group significantly decreased to compared with control. On the above the findings, the tested group of minocycline and $TGF-{\beta}1$ did not increase the effect on the cell activity than $TGF-{\beta}1$ only tested group and the tested group of minocycline inhibited cell activity. This results indicate that minocycline was effective on cell attachment in early stage, but it is harmful to cell activity, that inhibitory effect of minocycline was compensated with stimulatory effect of $TGF-{\beta}1$.

  • PDF

The clinical effects of Calcium Sulfate combined with Calcium Carbonate in treating intrabony defects (치조골 결손부 치료시 calcium carbonate와 calcium sulfate 혼합물의 임상적 효과)

  • Lee, Seung-Bum;Chae, Gyung-Jun;Jung, Ui-Won;Kim, Chang-Sung;Choi, Seong-Ho;Cho, Kyoo-Sung;Kim, Chong-Kwan;Chai, Jung-Kyu
    • Journal of Periodontal and Implant Science
    • /
    • v.38 no.2
    • /
    • pp.237-246
    • /
    • 2008
  • Purpose: If bone grafts and guided tissue regeneration are effective individually in treating osseous defects, then the questionis, what would happen when they are combined. Bone grafts using Calcium Carbonate(Biocoral) and Guided Tissue Regeneration using Calcium Sulfate(CALMATRIX) will maximize their advantages and show the best clinical results in intrabony defects. This study was to compare the effects of a combination of CS and CC with control treated only with modified widman flap in a periodontal repair of intrabony defects. Materials and Methods: 30 patients with chronic periodontitis were used in this study. 10 patients were treated with a combination of CS and CC as the experimental group II and another 10 patients were treated with CC as the experimental group I, and the remaining 10 patients, the control group were treated only with modified widman flap. Clinical parameters including probing depth, gingival recession, bone probing depth and loss of attachment were recorded 6 months later. Results: The probing depth changes were $3.30{\pm}1.34\;mm$ in the control group, $4.2{\pm}1.55\;mm$ in the experimental group I(CC) and $5.00{\pm}1.33\;mm$ in the experimental group II(CS+CC). They all showed a significant decrease 6 months after surgery(p<0.01). There was a significant difference(p<0.05) between the control and experimental group. However there were no significant difference(p<0.05) between the experimental group I and II. The gingival recession changes w $-1.30{\pm}1.25\;mm$ in the control group, This is a significant difference(p<0.01). However, there was a $-0.50{\pm}0.53\;mm$ change in the experimental group I(CC) and $-0.60{\pm}0.97\;mm$ in the experimental group II(CS+CC). In addition, in terms of gingival recession, there was a no significance difference(p<0.05) among the groups. The clinical attachment level changes were $2.00{\pm}1.33\;mm$ in the control group, $3.60{\pm}1.58\;mm$ in the experimental group I(CC) and $4.40{\pm}1.17\;mm$ in the experimental group II(CS+CC). They all showed a significant decrease 6 months after surgery(p<0.01). There was a significant difference(p<0.05) between the control and experimental group. However there was a no significance difference(p<0.05) between the experimental group I and II. The bone probing depth changes were $0.60{\pm}0.52\;mm$ in the control group, $3.20{\pm}1.48\;mm$ in the experimental group I(CC) and $4.60{\pm}1.43\;mm$ in the experimental group II(CS+CC). All of them showed a significant decrease 6 months after surgery(p<0.01), there was a significance difference(p<0.05) among the groups. Conclusion: Treatment using a combination of CS and CC have a potential to improve periodontal parameters in intrabony defects and More efficient clinical results can be expected in intrabony defects less than 2 walls grafted with CS and CC.

A Comparative Study of Initial Healing Process in White Rats after Gingivectomy using $CO_2$ Laser of different watts (($CO_2$)레이저를 이용한 백서의 치은절제술시 출력에 따른 초기 치유과정의 비교)

  • Cho, Kyoo-Sung;Hong, Sung-Jae;Choi, Seong-Ho;Chai, Jung-Kiu;Kim, Chong-Kwan
    • Journal of Periodontal and Implant Science
    • /
    • v.27 no.3
    • /
    • pp.603-619
    • /
    • 1997
  • The use of laser in the treatment of soft tissue minimizes hemorrhage, provides better view of the operating field, and thereby minimizes operating time. Also, there will be far less post-operative swelling, pain and scar formation, and sterilizing effect are shown in some portions of the wound site. All these advantages of laser therapy contribute to its widespread use in the field of medicine and dentistry. Regarding such facts, we used CO2 laser of different watts in gingivectomy for white rats to compare initial healing process. For the control group, the least amount of output in performing gingivectomy(4watts) was offered, and for the experimental group, 6watts was given. Animals were sacrificed on the second, third days, 1 weeks, 2 weeks, and 3 weeks after operation, and their specimens were histologically analyzed. The following results were obtained: 1. Blood clot of small size was observed in both the control and experimental groups after two days, and no more thereafter. 2. In both the control and experimental groups, the inflammation zone size was the greatest after two days, and it decreased gradually to become almost invisble by the second week. The experimental group showed larger size of inflammation zone during second and third days: however, there was no difference after one week. 3. Granulation tissue in both the control and experimental groups showed gradual maturation with time, and by the second week, it was almost replaced by normal connective tissue. By the third week, complete healing pattern was observed. The experimental group showed larger granulation tissue than the control group until the third day, but there was no significant difference after one week. 4. In both the control and experimental groups, gingival epithelialization began on the second day. After one week, regeneration of rete peg and partial formation of junctional epithelium were observed: by the second week, keratinization of oral sulcular epithelium began, and it was completed by the third week.

  • PDF

The Role of the Endometrium and Embryo in Human Implantation (인간 착상 과정에 자궁내막과 배아의 역할)

  • Jee, Byung-Chul
    • Development and Reproduction
    • /
    • v.13 no.1
    • /
    • pp.1-11
    • /
    • 2009
  • Implantation itself is governed by an array of endocrine, paracrine and autocrine modulators, of embryonic and maternal origin. Window of implantation is the unique temporal and spatial expression of factors allows the embryo to implant via signaling, appositioning, attachment, and invasion in a specific time frame of $2{\sim}4$ days. When the embryo has arrived in the uterine cavity, a preprogrammed sequence of events occurs, which involves the production and secretion of a multitude of biochemical factors such as cytokines, growth factors, and adhesion molecules by the endometrium and the embryo, thus leading to the formation of a receptive endometrium. Cytokines such as LIF, CSF-1, and IL-1 have all been shown to play important roles in the cascade of events that leads to implantation. Integrin, L-selectin ligands, glycodelin, mucin-1, HB-EGF and pinopodes are involved in appositioning and attachment. The embryo also produces cytokines and growth factors (ILs, VEGF) and receptors for endometrial signals such as LIF, CSF-1, IGF and HB-EGF. The immune system and angiogenesis play an important role. The usefulness of these factors to assess endometrial receptivity and to estimate the prognosis for pregnancy in natural and artificial cycles remains to be proven. Integrins, pinopodes, glycodelin and LIF (from biopsies) are promising candidates; from uterine flushings, glycodelin and LIF are also candidates. The ideal serum marker is not available, but VEGF, glycodelin and CSF have some clinical implications. Further evaluation that includes larger groups of infertile women and fertile controls are needed to elucidate whether their presence in plasma, flushing fluid, or endometrial samples can be used as some kind of a screening tool to assess endometrial function and prognosis for pregnancy before and after artificial reproductive therapy. A better understanding of their function in human implantation may lead to therapeutic intervention, thereby improving the success rate in reproduction treatment. New molecular techniques are becoming available for measuring both embryonic and endometrial changes prior to and during implantation. The use of predictive sets of markers may prove to be more reliable than a single marker. Ultimately, the aim is to use these tools to increase implantation in artificial cycles and consequently improve live-birth rates.

  • PDF

THE EFFECTS OF VARIOUS TETRACYCLINE HCL CONCENTRATION TREATED ROOW SURFACES ON PROLIFERATION AND SPREADING OF PERIODONTAL LIGAMENT CELLS (다양한 농도의 테트라사이클린로 처리된 치근면이 치주인대세포의 증식과 전개에 미치는 영향)

  • Jung, Oh-Chul;Sun, Jo-Young
    • Journal of Periodontal and Implant Science
    • /
    • v.24 no.3
    • /
    • pp.581-596
    • /
    • 1994
  • This in vitro study was undertaken to obtain optimal tetracycline concentration that aids proliferation and spreading of human periodontal ligament cells, for clinical application in root surfaces of periodontally diseased teeth. Periodontal ligament cells used in this study were obtained from explants of periodontal ligament of 1st premolar teeth which were extracted for the purpose of orthodontic treatment. The cells were cultured in Dulbecco's Modified Eagle Medium(DMEM) supplemented with 100 U/ml penicillin, $100\;{\mu}g/ml$ streptomycin and 10% FBS at $37^{\circ}C$, 100% humidity, 5% $CO_2-95%$ air. Cells were used between the third to 4th passage. After root planing of periodontally extracted teeth, the root slabs were cut with carborundum disk. In the cell proliferation experiment, experimental groups were root planing only group, immersed groups in 25, 50, 75, 100, 150mg/ml aqueous solution of Tetracycline HCl followed by a vigorous rinse in PBS. Human PDL cells at concentration of $1{\times}10^5\;cells/ml$ were seeded in each culture well which contained root slabs and incubated for 6 hours. Then, all of the root slabs were moved into new 24 culture well and incubated 24, 48 and 72 hours. The cell counting was done by inverted phase contrast microscope after trypsinization. The following results were obtained. The cell number was increased in order root planing only group, 25, 150, 50, 75, 100mg/ml of Tetracycline HCl treated group in 24, 48 and 72 hours. The maximal cell number was obtained when the root slabs were immersed in solution with 100mg/ml of Tetracycline HCl. There were statistically significant between the root planing only group and 75, 100 mg/ml of Tetracycline HCl treated group in 24 hours, between the root planing only group and 100mg/ml of Tetracycline HCl treated group in 48 hours, between the root planing only group and 50, 75, 100mg/ml of Tetracycline HCl treated group, between 25 and 100mg/ml of Tetracycline HCl treated group in 72 hours(p<0.05). In the cell spreading experiment, after 30 minutes of incubated, in the root planing only group, the cells were generally round in shape. The cell surface was mostly covered with blebs. The cells started to attach to root surface by cytoplasmic extension in 50, 100mg/ml of Tetracycline HCl treated groups, more numerous cells attached to root surface than root planing only group. Many orifices of dentinal tubule were exposed, cells showed radially spreaded cytoplasm and unspreaded central region of the cell was covered with blebs. After 6 hours of incubation, in the root planing only group, cells showed radially spreaded cytoplasm and were attached flat appearance. In 50, 100mg/ml of Tetracycline HCl treated groups, cellular margin was concaved and cytoplasm showed elongated appearance with polarity. After 24 hours of incubation, in the root planing group, cells showed characteristic polarity. In 50, 100mg/ml of Tetracycline HCl treated groups, cells showed more elongated and spindle - like appearance.

  • PDF