• Title/Summary/Keyword: Impingement Baffle

Search Result 21, Processing Time 0.086 seconds

A Study on Advanced Impinging Baffle Model in Extraction Nozzle of a Feedwater Heater (급수가열기 추기노즐의 개선된 충격판 모델에 관한 연구)

  • Lee, Woo;Hwang, Kyeong-Mo;Kim, Kyung-Hoon
    • Journal of ILASS-Korea
    • /
    • v.12 no.1
    • /
    • pp.18-29
    • /
    • 2007
  • Feedwater heaters of many nuclear power plants have recently experienced severe wall thinning damage, which will increase as operating time progresses. Several nuclear power plants in Korea have experienced wall thinning damage in the area around the impingement baffle - installed downstream of the high pressure turbine extraction steam line - inside number 5A and 5B feedwater heaters. At that point, the extracted steam from the high pressure turbine is two phase fluid at high temperature, high pressure, and high speed. Since it flows in reverse direction after impinging the impingement baffle, the shell wall of the number 5 high pressure feedwater heater may be affected by flow-accelerated corrosion. This paper describes the comparisons between the numerical analysis results using the FLUENT code and the down scale experimental data in an effort to determine root causes of the shell wall thinning of the high pressure feedwater heaters. The numerical analysis and experimental data were also confirmed by actual wall thickness measured by an ultrasonic test.

  • PDF

A Study on Experiment and Numerical Analysis for Disclosing Shell Wall Thinning of a Feedwater Heater (급수가열기 추기노즐 충격판 주변의 동체감육 현상규명을 위한 실험 및 수치해석 연구)

  • Kim, Kyung-Hoon;Lee, Woo;Hwang, Kyeong-Mo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.31 no.1 s.256
    • /
    • pp.1-7
    • /
    • 2007
  • Feedwater heaters of many nuclear power plants have recently experienced severe wall thinning damage, which will increase as operating time progresses. Several nuclear power plants in Korea have experienced wall thinning damage in the area around the impingement baffle - installed downstream of the high pressure turbine extraction steam line - inside number 5A and 5B feedwater heaters. At that point, the extracted steam from the high pressure turbine is two phase fluid at high temperature, high pressure, and high speed. Since it flows in reverse direction after impinging the impingement baffle, the shell wall of the number 5 high pressure feedwater heater may be affected by flow-accelerated corrosion. This paper describes the comparisons between the numerical analysis results using the FLUENT code and the down scale experimental data in an effort to determine root causes of the shell wall thinning of the high pressure feedwater heaters. The numerical analysis and experimental data were also confirmed by actual wall thickness measured by an ultrasonic test.

A Study on the Fluid Mixing Analysis for Proving Shell Wall Thinning of a Feedwater Heater (급수가열기 동체 감육 현상 규명을 위한 유동해석 연구)

  • Kim, Kyung-Hoon;Hwang, Kyeong-Mo;Kim, Sang-Nyung
    • Journal of ILASS-Korea
    • /
    • v.9 no.4
    • /
    • pp.24-30
    • /
    • 2004
  • Feedwater flowing tube side of number 5 high pressure feedwatrr heaters was heated by extracting steam from high pressure turbine and draining water from moisture separators and number 6 high pressure feedwater heaters and supplied into steam generators. Because the extracting steam from the high pressure turbine is two phase fluid of high temperature, high pressure, and high speed and flows to inverse direction after impinging to impingement baffle. the shell wall of the number 5 high pressure feedwater heater may be affected by flow accelerated corrosion. On May 14, 1999, Point Beach Nuclear Plant (PBNP) with operating at full power experienced a steam leak from rupture of shell side of number 4B feedwater heater. Also, d domestic nuclear power plant experienced a severe wall thinning of shell side of number 5A and 5B feedwater heaters. This paper describes the fluid mixing analysis study using PHOENICS code in order to get at the root of the shell wall thinning of the feedwater heaters. The sections included in the fluid mixing analysis model are around the number 5h feedwater heater shell including the extracting pipeline. To identify the relation between the local velocities and wall thinning. the local velocities according to the analysis results were compared with the distribution of the shell wall thickness by ultrasonic test.

  • PDF

A Study on the Relief of Shell Wall Thinning of Low Pressure Type Feedwater Heater Around the Extraction Nozzle Identified (저압형 급수가열기 추기노즐에서 동체 감육 완화에 관한 연구)

  • Kim, Kyung-Hoon;Hwang, Kyeong-Mo;Seo, Hyuk-Ki
    • Journal of ILASS-Korea
    • /
    • v.13 no.4
    • /
    • pp.173-179
    • /
    • 2008
  • The current machinery and tools of secondary channel of the nuclear power plants were produced in the carbon-steel and low-alloy steel. What produced with the carbon-steel occurs wall thinning effect from flow accelerated corrosion by the fluid flow at high temperature, high pressure. Several nuclear power plants in Korea have experienced wall thinning damage in the area around the impingement baffle-installed. Wall thinning by flow accelerated corrosion occurs piping system, the heat exchanger, steam condenser and feedwater heaters etc,. Feedwater heaters of many nuclear power plants have recently experienced sever wall thinning damage, which will increase as operating time progress. This study describes the comparisons between the numerical results using the FLUENT code and experimental data of down scale model.

  • PDF

The Characteristics of Heat Transfer in a Channel with Wire-screen Baffles (와이어 스크린 배플이 설치된 채널에서의 열전달 특성)

  • Kim, W.C.;Ary, B.K.;Ahn, S.W.;Kang, H.K.
    • Journal of Power System Engineering
    • /
    • v.13 no.2
    • /
    • pp.11-17
    • /
    • 2009
  • The heat transfer characteristics of flow through two inclined wire-mesh baffles in a rectangular channel were investigated experimentally with varying the mesh number of wire screens and inclination angle of the baffles. Two different types of wire meshes such as dutch and plain weaves, were used in this experiment. Three kinds of baffle plates with different mesh specifications in the dutch weave and four different kinds in the plain weave were manufactured. Baffles were mounted on bottom wall with varied angles of inclination. Reynolds number was varied from 23,000 to 57,000. It is found that the placement of inclined wire-mesh baffles in the channel affects the heat transfer characteristics by combining both jet impingement and flow disturbance. The wire screen modified the flow structure leading to a change in the heat transfer characteristics. The results show that the baffle plate with the most number of mesh (type SA) has the highest heat transfer rate.

  • PDF

Effects of Baffles on Heat Transfer and Friction Factors in a Rectangular Channel (사각채널에 설치된 배플이 열전달과 마찰계수에 미치는 효과)

  • Ahn, Soo-Whan;Kang, Ho-Keun;Bae, Sung-Taek;Song, Min-Ho
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.30 no.6
    • /
    • pp.693-701
    • /
    • 2006
  • The present work investigates the local heat transfer characteristics and the associated frictional loss in a rectangular channel with inclined solid and perforated baffles to obtain the basic design data for gas turbine. Five different geometries of baffles such as 1) solid (without hole), 2) three holes, 3) six holes, 4) nine holes, 5) twelve holes were covered. A combination of two baffles of same overall size is used. The flow Reynolds number is ranged from 28,900 to 70,100. The placement of baffles augments the overall heat transfer greatly by combining both jet impingement and the boundary layer separation. The present results show that the average Nusselt number distribution is strongly dependent on number of holes in the baffle plates, i.e., the average Nusselt number increases with increasing number of holes. The friction factor decreases also with increasing the number of holes. however. its value increases with increasing the Reynolds number.

Experimental and Computational Studies of the Pulse Wave Impinging upon a Vertical Flat Plate (수직평판에 충돌하는 펄스파에 관한 실험적/수치해석적 연구)

  • 이동훈;김희동;강성황
    • Journal of KSNVE
    • /
    • v.11 no.2
    • /
    • pp.285-291
    • /
    • 2001
  • The impingement of a weak shock wane discharged from the open end of a shock tube upon a flat plate was investigated using shock tube experiments and numerical simulations. Harten-Yee Total Variation Diminishing method was used to solve axisymmetric, unsteady, compressible flow governing equations. Experiments were carried out to validate the present computations. The effects of the flat plate and baffle plate sizes on the impinging flow field over the flat plate were investigated. Shock Mach number was varied in the range from 1.05 to 1.20. The distance between the plate and shock tube was changed to investigate the effect on the peak pressure. From both the results of experiments and computations we obtained a good empirical equation to predict the peak pressure on the flat plate.

  • PDF

A Study on the Characteristics of the Pulse Wave Impinging upon a Flat Plate (평판에 충돌하는 펄스파의 특성에 관한 연구)

  • Kim, H.D.;Lee, D.H.
    • Proceedings of the KSME Conference
    • /
    • 2000.11b
    • /
    • pp.562-567
    • /
    • 2000
  • The Impingement of a weak shock wave discharged from the open end of a shock tube upon a flat plate was investigated using shock tube experiments and numerical simulations. Harten-Yee Total Variation Diminishing method was used to solve axisymmetric, unsteady, compressible flow governing equations. Experiments were carried out to validate the present computations. The effects of the flat plate and baffle plate sizes on the impinging flow field over the flat plate were investigated. Shock Mach number was vaned in the range from 1.05 to 1.20. The distance between the plate and shock tube was changed to investigate the effect on the peak pressure. From both the results of experiments and computations we obtained a good empirical equation to predict the peak pressure on the flat plate.

  • PDF

Experimental and Numerical Analysis for Effects of Two Inclined Baffles on Heat Transfer Augmentation in a Rectangular Duct (사각 덕트 내에 설치된 2개의 경사진 배플에 의한 열전달 증진 효과에 관한 실험 수치해석)

  • Kang, Ho-Keun;Ahn, Soo-Whan;Putra, Ary Bachtiar Krishna
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.19 no.11
    • /
    • pp.751-760
    • /
    • 2007
  • Baffles enhance heat transfer by disturbing boundary layer and bulk flow, creating impingement, and increasing heat transfer surface area. This study was performed to determine how the two inclined baffles (${\alpha}=5^{\circ}$ perforated models) placed at a rectangular channel affect heat transfer and associated friction characteristics. The parametric effects of perforated baffles (3, 6 and 12 holes) and flow Reynolds number ranging from 28,900 to 61,800 on the heated target surface are explored. Comparisons of the experimental data with the numerical results by commercial code CFX 10.0 are presented. As for the investigation of heat transfer behaviors on local Nusselt number with two baffles placed at $x/D_h=0.8$ and $x/D_h=8.0$ of the edge of baffles, it is evident that the inclined perforated baffles augment overall heat transfer significantly by both jet impingement and boundary layer separation. There exists an optimum perforation density to maximize heat transfer coefficients; i.e., the average Nusselt number increases with increasing number of holes, but the friction factor decreases with an increase in the hole number placed at baffles.