• Title/Summary/Keyword: Impervious Surface

Search Result 134, Processing Time 0.028 seconds

IMPERVIOUS SURFACE ESTIMATION USING REMOTE SENSING IMAGES AND TREE REGRESSIOIN

  • Kim, Soo-Young;Kim, Jong-Hong;Heo, Joon;Heo, Jun-Haeng
    • Proceedings of the KSRS Conference
    • /
    • v.1
    • /
    • pp.239-242
    • /
    • 2006
  • Impervious surface is an important index for the estimation of urbanization and environmental change. In addition, impervious surface has an influence on the parameters of rainfall-runoff model during rainy season. The increase of impervious surface causes peak discharge increasing and fast concentration time in urban area. Accordingly, impervious surface estimation is an important factor of urban rainfall-runoff model development and calibration. In this study, impervious surface estimation is performed by using remote sensing images such as landsat-7 ETM+ and high resolution satellite image and regression tree algorithm based on case study area ? Jungnang-cheon basin in Korea.

  • PDF

A Study on Changes in Impervious Surface Area Rate at Administrative Units for Gyeongsangnam-do (경상남도 행정구역별 불투수면적률 현황 및 변화 연구)

  • Kim, Hyeonjoon;Choi Yoonhee;Kim, Hakkwan;Jang, Min-Won
    • Journal of Korean Society of Rural Planning
    • /
    • v.29 no.4
    • /
    • pp.117-125
    • /
    • 2023
  • This study aimed to analyze the recent status and changes in impervious surface areas and their ratios across regions in Gyeongsangnam-do, providing fundamental data for regional development and impervious surface management. Based on the 'Guidelines for Calculating Water Cycle Management Indicators for Nonpoint Pollution Source Control(Ministry of Environment)', we processed the land characteristics survey map(shapefile) from 2018 and 2022 to analyze impervious surface area and their rates by administrative boundaries. The impervious surface area in Gyeongsangnam-do increased from 75,652 ha in 2018 to 81,055 ha in 2022, with the rate rising by 0.51% from 7.18% to 7.69%. The average of impervious surface area across 545 eupmyeon units expanded by approximately 9 ha, from 139.8 ha in 2018 to 148.8 ha in 2022, with the rate increasing by 0.71%. Concurrently, the whole population declined by 2.8% while the number of households surged by 6.4%, correlating with the growth in impervious areas. Despite population decreases, factors such as population migration, increased household fragmentation, new residential developments, and industrial facility expansions have consistently contributed to the rise in impervious surface area. Notably, even in areas with high impervious surface area rate, significant disparities existed between urbanized areas and predominantly rural regions. Furthermore, about 333 units(61% of the whole eupmyeons), showed negligible changes in their impervious surface area rate, with an increase of less than 0.5%.

Comparison of various image fusion methods for impervious surface classification from VNREDSat-1

  • Luu, Hung V.;Pham, Manh V.;Man, Chuc D.;Bui, Hung Q.;Nguyen, Thanh T.N.
    • International Journal of Advanced Culture Technology
    • /
    • v.4 no.2
    • /
    • pp.1-6
    • /
    • 2016
  • Impervious surfaces are important indicators for urban development monitoring. Accurate mapping of urban impervious surfaces with observational satellites, such as VNREDSat-1, remains challenging due to the spectral diversity not captured by an individual PAN image. In this article, five multi-resolution image fusion techniques were compared for the task of classifting urban impervious surfaces. The result shows that for VNREDSat-1 dataset, UNB and Wavelet tranformation methods are the best techniques in reserving spatial and spectral information of original MS image, respectively. However, the UNB technique gives the best results when it comes to impervious surface classification, especially in the case of shadow areas included in non-impervious surface group.

Impervious Surface Estimation of Jungnangcheon Basin Using Satellite Remote Sensing and Classification and Regression Tree (위성원격탐사와 분류 및 회귀트리를 이용한 중랑천 유역의 불투수층 추정)

  • Kim, Sooyoung;Heo, Jun-Haeng;Heo, Joon;Kim, SungHoon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.6D
    • /
    • pp.915-922
    • /
    • 2008
  • Impervious surface is an important index for the estimation of urbanization and the assessment of environmental change. In addition, impervious surface influences on short-term rainfall-runoff model during rainy season in hydrology. Recently, the necessity of impervious surface estimation is increased because the effect of impervious surface is increased by rapid urbanization. In this study, impervious surface estimation is performed by using remote sensing image such as Landsat-7 ETM+image with $30m{\times}30m$ spatial resolution and satellite image with $1m{\times}1m$ spatial resolution based on Jungnangcheon basin. A tasseled cap transformation and NDVI(normalized difference vegetation index) transformation are applied to Landsat-7 ETM+ image to collect various predict variables. Moreover, the training data sets are collected by overlaying between Landsat-7 ETM+ image and satellite image, and CART(classification and regression tree) is applied to the training data sets. As a result, impervious surface prediction model is consisted and the impervious surface map is generated for Jungnangcheon basin.

Estimating Impervious Surface Fraction of Tanchon Watershed Using Spectral Analysis (분광혼합분석 기법을 이용한 탄천유역 불투수율 평가)

  • Cho Hong-lae;Jeong Jong-chul
    • Korean Journal of Remote Sensing
    • /
    • v.21 no.6
    • /
    • pp.457-468
    • /
    • 2005
  • Increasing of impervious surface resulting from urban development has negative impacts on urban environment. Therefore, it is absolutely necessary to estimate and quantify the temporal and spatial aspects of impervious area for study of urban environment. In many cases, conventional image classification methods have been used for analysis of impervious surface fraction. However, the conventional classification methods have shortcoming in estimating impervious surface. The DN value of the each pixel in imagery is mixed result of spectral character of various objects which exist in surface. But conventional image classification methods force each pixel to be allocated only one class. And also after land cover classification, it is requisite to additional work of calculating impervious percentage value in each class item. This study used the spectral mixture analysis to overcome this weakness of the conventional classification methods. Four endmembers, vegetation, soil, low albedo and high albedo were selected to compose pure land cover objects. Impervious surface fraction was estimated by adding low albedo and high albedo. The study area is the Tanchon watershed which has been rapidly changed by the intensive development of housing. Landsat imagery from 1988, 1994 to 2001 was used to estimate impervious surface fraction. The results of this study show that impervious surface fraction increased from $15.6\%$ in 1988, $20.1\%$ in 1994 to $24\%$ in 2001. Results indicate that impervious surface fraction can be estimated by spectral mixture analysis with promising accuracy.

GENERATION OF AN IMPERVIOUS MAP BY APPLYING TASSELED-CAP ENHANCEMENT USING KOMPSAT-2 IMAGE

  • Koh, Chang-Hwan;Ha, Sung-Ryong
    • Proceedings of the KSRS Conference
    • /
    • 2008.10a
    • /
    • pp.378-381
    • /
    • 2008
  • The regulating and relaxing targets in the Land Use Regulation and Total Maximum Daily Loads are influenced by Land cover information. For the providing more accurate land information, this study attempted to generate an impervious surface map using KOMPSAT-2 image which a Korea manufactured high resolution satellite image. The classification progress of this study carried out by tasseled-cap spectral enhancement through each class extraction technique neither existing classification method. KOMPSAT-2 image of this study is enhanced by Soil Brightness Index(SBI), Green vegetation Index(GVI), None-Such wetness Index(NWI). Then ranges of extracted each index in enhanced image are determined. And then, Confidence Interval of classes was determined through the calculating Non-exceedance Probability. Spectral distributions of each class are changed according to changing of Control coefficient(${\alpha}$) at the calculated Non-exceedance Probability. Previously, Land cover classification map was generated based on established ranges of classes, and then, pervious and impervious surface was reclassified. Finally, impervious ratio of reclassified impervious surface map was calculated with blocks in the study area.

  • PDF

Utilization of Remote Sensing and GIS in Aggregate Control of Urban Impervious Coverage (도시의 불투수면 총량규제에서 원격탐사와 GIS의 활용)

  • Um, Jung-Sup
    • Journal of Environmental Impact Assessment
    • /
    • v.13 no.5
    • /
    • pp.263-276
    • /
    • 2004
  • This research is primarily intended to propose a new concept for aggregate control of impervious coverage using remote sensing and GIS. An empirical study for a case study site was conducted to demonstrate how a standard remote sensing and GIS technology can be used to assist in implementing the aggregate control for impervious coverage as intermediary between decision makers and scientists. Guidelines for a replicable methodology are presented to provide a strong theoretical basis for the standardization of factors involved in the aggregate control; the meaningful definition of land mosaic in terms of pervious areas, classification of pervious intensity, change detection for pervious areas. Detailed visual maps (e.g. estimation of impervious surface allowable) can be generated over large areas quickly and easily to increase the scientific and objective decision-making for the aggregate control. It is anticipated that this research output could be used as a valuable reference to confirm the potential of remote sensing and GIS in the aggregate control for impervious coverage.

A Study on Optimal Pervious/Impervious Map Generation Method for Urban Impervious Surface Management based on GIS (GIS기반의 도시지역 불투수면 관리를 위한 최적 투수/불투수도 제작 방법에 관한 연구)

  • Oh, Seong Kwang;Kim, Kye Hyun;Lee, Chol Young;Ryu, Kwang Hyun
    • Journal of Korean Society on Water Environment
    • /
    • v.31 no.2
    • /
    • pp.120-133
    • /
    • 2015
  • Due to increasing impervious surfaces resulting from urbanization and industrialization which are directly linked to urban inundation and non-point pollutants runoff, there is a need to manage them systematically. A management over urban impervious surfaces calls for pervious/impervious maps, which enable viewing the distribution of impervious surfaces. Nevertheless, relevant data are absent as now. In this respect, despite the diversity of proposed methods, pilot implementation and accuracy verification have never been conducted. Therefore, this study is aimed to produce a pilot pervious/impervious map based on previously proposed methods and to elucidate its pros and cons with a view to proposing a method for producing a GIS-based optimal pervious/impervious map. Following previously proposed methods, a pervious/impervious map of Bupyeong-gu, Incheon was produced. Then, a method of producing optimal pervious/impervious maps applicable to urban areas was proposed through the comparison of pros and cons of relevant spatial data. As a result, the map had been confirmed 99.2% of classification accuracy. Based on the present findings, future studies should establish a standardized method for producing. Also, this method should be used to produce pervious/impervious maps of other regions so that it can be applied to managing impervious surfaces in major urban areas nationwide.

Impervious Surface Mapping of Cheongju by Using RapidEye Satellite Imagery (RapidEye 위성영상을 이용한 청주시의 불투수면지도 생성기법)

  • Park, Hong Lyun;Choi, Jae Wan;Choi, Seok Keun
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.22 no.1
    • /
    • pp.71-79
    • /
    • 2014
  • Most researches have created the impervious surface map by using low-spatial-resolution satellite imagery and are inefficient to generate the object-based impervious map with a broad area. In this study, segment-based impervious surface mapping algorithm is proposed using the RapidEye satellite imagery in order to map impervious area. At first, additional bands are generated by using TOA reflectance conversion RapidEye data. And then, shadow and water class are extracted using training data of converted reflectance image. Object-based impervious surface can be generated by spectral mixture analysis based on land cover map of Ministry of Environment with medium scale, in the case of other classes except shadow and water classes. The experiment shows that result by our method represents high classification accuracy compared to reference data, quantitatively.

A Study on the Calculation of Stormwater Utility Fee Using GIS based Impervious Surface Ratio Estimation Methodology (GIS 기반 불투수율 산정방법론을 활용한 강우유출수 부담금 모의산정 방안 연구)

  • Yoo, Jae Hyun;Kim, Kye Hyun;Choi, Ji Yong;Lee, Chol Young
    • Journal of Korean Society on Water Environment
    • /
    • v.37 no.3
    • /
    • pp.157-167
    • /
    • 2021
  • Korea needs to develop a rational system to separate stormwater utility fee from current sewerage fee. In this study, the scenario for calculating stormwater utility fee of Bupyeong-gu was suggested and the results were considered. For this purpose, the application of stormwater utility fee overseas and current domestic system were analyzed. A three step calculating scenario considering suitable domestic situation and impervious surface area was suggested. Water, sewerage usage, and hydrant data were collected. The total amount of water and sewerage fees for land use were calculated. The sewerage fee of Bupyeong-gu for the year 2014 was 21,685,446,578 won. Assuming that 40% of this amount was the cost associated to stormwater, the result showed that the fees for residential area in third step decreased by 0.77% compared to that of the first step. For commercial area, the stormwater utility fee decreased by 36.87%. For industrial area, although the consumption of water was similar to that of commercial area, the stormwater utility fee increased by 8.35%. For green area, the fee increased by 37.46%. This study demonstrated that the calculation of actual stormwater utility fee using impervious surface map and impervious Surface Ratio Estimation Methodology developed in previous studies is feasible.