• Title/Summary/Keyword: Impermeable area

Search Result 83, Processing Time 0.029 seconds

Model Test for Heave Motion Reduction of a Circular Cylinder by a Damping Plate (감쇠판에 의한 원기둥의 상하운동 저감 모형시험)

  • Koh, Hyeok-Jun;Kim, Jeong-Rok;Cho, Il-Hyoung
    • Journal of Ocean Engineering and Technology
    • /
    • v.27 no.4
    • /
    • pp.76-82
    • /
    • 2013
  • Motion reduction of an offshore structure at resonant frequency is essential for avoiding critical damage to the topside and mooring system. A damping plate has a distinct advantage in reducing the motion of a floating structure by increasing the added mass and the damping coefficient. In this study, the heave motion responses of a circular cylinder with an impermeable and a permeable damping plate attached at the bottom of the cylinder were investigated thru a model test. The viscous damping coefficients for various combinations of porosity were obtained from a free-decay test by determining the ratio between any pair of successive amplitudes. Maximum energy dissipation occurred at a porous plate with a porosity P = 0.1008. Experimental results for regular and irregular waves were compared with an analytical solution by Cho (2011). The measured heave RAO and spectrum reasonably followed the trends of the predicted values. A significant motion reduction at resonant frequency was pronounced and the heaving-motion energy calculated by the integration of the area under the heave motion spectrum was reduced by more than 75% by the damping plate. However, additional energy dissipation by eddies of strong vorticity and flow separation inside a porous damping plate was not found in the present experiments.

Study on the Method of Development of Road Flood Risk Index by Estimation of Real-time Rainfall Using the Coefficient of Correlation Weighting Method (상관계수가중치법을 적용한 실시간 강우량 추정에 따른 도로 침수위험지수 개발 방법에 대한 연구)

  • Kim, Eunmi;Rhee, Kyung Hyun;Kim, Chang Soo
    • Journal of Korea Multimedia Society
    • /
    • v.17 no.4
    • /
    • pp.478-489
    • /
    • 2014
  • Recently, flood damage by frequent localized downpours in cities are on the increase on account of abnormal climate phenomena and growth of impermeable area by urbanization. In this study, we are focused on flooding on roads which is the basis of all means of transportation. To calculate real-time accumulated rainfall on a road link, we use the Coefficient of Correlation Weighting method (CCW) which is one of the revised methods of missing rainfall as we consider a road link as a unobserved rainfall site. CCW and real-time accumulated rainfall entered through the Internet are used to estimate the real-time rainfall on a road link. Together with the real-time accumulated rainfall, flooding history, rainfall range causing flooding of a road link and frequency probability precipitation for road design are used as factors to determine the Flood Risk Index on roads. We simulated two cases in the past, July, 7th, 2009 and July, 15th, 2012 in Busan. As a result, all of road links included in the actual flooded roads at that time got the high level of flood risk index.

Analysis of Variables Influencing the Pressure Build-up and Volume Expansion of Kimchi Package (김치포장의 압력 및 부피 변화에 영향을 미치는 인자의 분석)

  • 이동선;최홍식;박완수
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.28 no.2
    • /
    • pp.429-437
    • /
    • 1999
  • A mathematical model was established for estimating changes in pressure and volume of permeable kimchi packages. The model comprises the CO2 gas production from kimchi and permeation of O2, CO2 and N2 through the permeable film or sheet. Using the developed model, the effects of various packaging variables on the pressure and volume changes were analyzed for rigid and flexible packag es of kimchi(3% salt content) at 15oC, and then effect of storage temperature was also looked into. In case of rigid pack of 400g, using the plastic sheet of high CO2 permeability and initial vacuumizing can help to relieve the problem of pressure build up. The lower fill weight can further reduce the pressure, but will result in higher packaging cost. For the flexible package of 3 kg, highly permeable films such as low density polyethylene(LDPE) and polypropylene can reduce the volume expansion. Higher ratio of CO2 permeability to O2 and N2 permeabilities are effective in reducing the volume expansion. Increased surface area cannot contribute to reduction of volume expansion for highly permeable flexible packages of kimchi. For the impermeable packages, pressure and volume at over ripening stage (acidity 1.0%) increase with decreased temperature, while those at optimum ripening stage(acidity 0.6%) change little with temperature. Pressure of permeable rigid LDPE package increases with tem perature at any ripening stage, and temperature affects the volume of flexible LDPE package very slightly. Experimental verification of the present results and package design with economical consid eration are needed as a next step for practical application.

  • PDF

Paleoseismological implications of liquefaction-induced structures caused by the 2017 Pohang Earthquake

  • Gihm, Yong Sik;Kim, Sung Won;Ko, Kyoungtae;Choi, Jin-Hyuck;Bae, Hankyung;Hong, Paul S.;Lee, Yuyoung;Lee, Hoil;Jin, Kwangmin;Choi, Sung-ja;Kim, Jin Cheul;Choi, Min Seok;Lee, Seung Ryeol
    • Geosciences Journal
    • /
    • v.22 no.6
    • /
    • pp.871-880
    • /
    • 2018
  • During and shortly after the 2017 Pohang Earthquake ($M_w$ 5.4), sand blows were observed around the epicenter for the first time since the beginning of instrumental seismic recording in South Korea. We carried out field surveys plus satellite and drone imagery analyses, resulting in observation of approximately 600 sand blows on Quaternary sediment cover in this area. Most were observed within 3 km of the epicenter, with the farthest being 15 km away. In order to investigate the ground's susceptibility to liquefaction, we conducted a trench study of a 30 m-long sand blow in a rice field 1 km from the earthquake epicenter. The physical characteristics of the liquified sediments (grain size, impermeable barriers, saturation, and low overburden pressure) closely matched the optimum ground conditions for liquefaction. Additionally, we found a series of soft sediment deformation structures (SSDSs) within the trench walls, such as load structures and water-escaped structures. The latter were vertically connected to sand blows on the surface, reflecting seismogenic liquefaction involving subsurface deformation during sand blow formation. This genetic linkage suggests that SSDS research would be useful for identifying prehistoric damage-inducing earthquakes ($M_w$ > 5.0) in South Korea because SSDSs have a lower formation threshold and higher preservational potential than geomorphic markers formed by surface ruptures. Thus, future combined studies of Quaternary surface faults and SSDSs are required to provide reliable paleoseismological information in Korea.

Evaluation of Drainage Capacity of Precast Concrete-panel Retaining Wall Attached to In-situ Ground Using Numerical Analysis (수치해석을 이용한 원지반 부착식 판넬옹벽의 투수성 평가)

  • Kwon, Youg Kyu;Lee, Jae Won;Hwang, Young-cheol;Ban, Hoki;Lee, Minjae
    • Journal of the Korean Geotechnical Society
    • /
    • v.37 no.3
    • /
    • pp.43-50
    • /
    • 2021
  • On the construction of new roads, the cut slope is inevitable and thus has been widely applied in the mountainous area. Particularly, the retaining wall with the precast concrete panel is often selected for its higher stability and mostly constructed in bottom-up method. However, the bottom-up method results in steeper slope as 1:0.05 before constructiong retaining wall and thus causes poor compaction at backfill which may induce instability during or after the construction. To overcome this problem, precast concrete panel retaining wall was attached in-situ ground (so called top-down). This paper presents the evaluation of drainage capacity of top-down method which has impermeable layer between panel and mortar being used to increase the ability of attachment of the precast concrete panel.

Estimation of Pollution Using Load Duration Curves at Streams in Sapgyo Watershed (부하지속곡선을 이용한 삽교호수계 지류하천의 오염원인 분석)

  • Cho, Jeongho;Kim, Hongsu;Cho, Byunguk;Park, Sanghyun;Lee, Mukyu;Lee, byeonggu
    • Journal of Korean Society on Water Environment
    • /
    • v.37 no.3
    • /
    • pp.175-189
    • /
    • 2021
  • In this study, 48 streams in the Sapgyo Watershed were selected, and the Load Duration Curves (LDC) were drawn up for each stream using water quality and flow monitoring over the last three years (2018-2020), and it was evaluated whether the target water quality was achieved for each flow section. As a result of evaluating whether or not the target water quality exceeded according to the LDC, it was found that 22 rivers exceeded the target water quality. Five rivers exceeded the target water quality due to point pollutant sources, 13 rivers exceeded the target water quality due to non-point pollutant sources, and 4 rivers exceeded the target water quality due to both point and non-point pollutant sources. Among the rivers that exceeded the target water quality due to point pollutant sources, which included domestic sewage of the untreated population, there is a need to reduce the influx of polluted loads by the untreated population. The use of eco-friendly fertilizers is recommended for rivers with a relatively high farmland ratio among rivers exceeding the target water quality due to non-point pollutant sources, and installation of boiling point reduction facilities that can reduce the amount of polluted load introduced during rainfall or manage water shores. In rivers with a large number of livestock breeding heads, the livestock houses located in these rivers need to be preferentially transferred to livestock manure treatment plants. Due to the high ratio of land area because of urbanization, initial rainwater treatment facilities are required to reduce the amount of pollutant load flowing into the river through the impermeable layer during rainfall.

Experimental and numerical investigation of closure time during artificial ground freezing with vertical flow

  • Jin, Hyunwoo;Go, Gyu-Hyun;Ryu, Byung Hyun;Lee, Jangguen
    • Geomechanics and Engineering
    • /
    • v.27 no.5
    • /
    • pp.433-445
    • /
    • 2021
  • Artificial ground freezing (AGF) is a commonly used geotechnical support technique that can be applied in any soil type and has low environmental impact. Experimental and numerical investigations have been conducted to optimize AGF for application in diverse scenarios. Precise simulation of groundwater flow is crucial to improving the reliability these investigations' results. Previous experimental research has mostly considered horizontal seepage flow, which does not allow accurate calculation of the groundwater flow velocity due to spatial variation of the piezometric head. This study adopted vertical seepage flow-which can maintain a constant cross-sectional area-to eliminate the limitations of using horizontal seepage flow. The closure time is a measure of the time taken for an impermeable layer to begin to form, this being the time for a frozen soil-ice wall to start forming adjacent to the freeze pipes; this is of great importance to applied AGF. This study reports verification of the reliability of our experimental apparatus and measurement system using only water, because temperature data could be measured while freezing was observed visually. Subsequent experimental AFG tests with saturated sandy soil were also performed. From the experimental results, a method of estimating closure time is proposed using the inflection point in the thermal conductivity difference between pore water and pore ice. It is expected that this estimation method will be highly applicable in the field. A further parametric study assessed factors influencing the closure time using a two-dimensional coupled thermo-hydraulic numerical analysis model that can simulate the AGF of saturated sandy soil considering groundwater flow. It shows that the closure time is affected by factors such as hydraulic gradient, unfrozen permeability, particle thermal conductivity, and freezing temperature. Among these factors, changes in the unfrozen permeability and particle thermal conductivity have less effect on the formation of frozen soil-ice walls when the freezing temperature is sufficiently low.

A Study on the Estimation of Discharge Coefficients with Variations of Side Weir Angle (횡월류 위어 유입각 변화에 따른 유량계수 추정 기초 연구)

  • Wan-Seop Pi;Hyung-Joon Chang;Kye-Won Jun
    • Journal of Korean Society of Disaster and Security
    • /
    • v.16 no.1
    • /
    • pp.81-89
    • /
    • 2023
  • Recently, due to global warming and urbanization due to the influence of abnormal weather, weather changes are increasing worldwide. Various measures have been proposed to reduce flood damage as flood volume increases due to problems such as an increase in impermeable area due to urbanization and reckless development. In this study, flow characteristics and overflow volume were analyzed using FLOW-3D, a three-dimensional CFD model, in accordance with changes in the cross-flow weir inlet angle installed in the meandering river section, and a basic study was conducted to evaluate the overflow capacity and calculate the flow coefficient. As a result of the analysis, the smaller the inflow angle of the transverse overflow, the lower the water level and flow rate of the main water flow after passing the transverse overflow, and the higher the inflow angle, the higher the water level and the flow rate. In addition, it was confirmed that the direct downstream flow rate decreased compared to the upstream flow rate when the inflow angle of the transverse overflow was 40° or higher.

Enhancing Design and Evaluating Mobility of Firefighting Chemical and Flame Protective Clothing for the National 119 Rescue Headquarters (중앙119구조본부 소방대원용 화학 보호복과 방열복의 동작적합성 평가 및 디자인 개선)

  • Syifa Salsabila;Do-Hee Kim;Joo-Young Lee
    • Fashion & Textile Research Journal
    • /
    • v.25 no.4
    • /
    • pp.520-533
    • /
    • 2023
  • The present study developed a test protocol for evaluating the mobility of firefighting chemical and flame personal protective equipment (PPE) for the National 119 Rescue Headquarters in Korea and suggested ergonomic design factors to improve their mobility and performance. Six types of PPE were employed, including three types for flame protective PPE (5 ~ 6 kg excluding the self-contained breathing apparatus), and three types for chemical and flame protective PPE (8 ~ 11 kg). These PPEs are used by the 119 Rescue firefighters. Three male firefighters (34.3 ± 1.2 y in age, 175 ± 8 cm in height, 81 ± 13 kg in body weight) participated in the mobility test and interview. A mobility test protocol consisting of 16 components (nine postures and seven motions including a dexterity test) along with a visibility test were developed based on pre-interviews and literature reviews. The findings indicated that the clothing microclimate humidity on the neck and chest exceeded 85%RH on average for all the six PPE conditions, with the chest area reaching as high as 98%RH. This high humidity caused fogging inside the visor and impaired visibility. The requirements for improving the PPE design in terms of mobility varied depending on whether it was the separated types or all-in-one types, particularly regarding the hood and gloves design. The findings of this study can be applied to improve the design of Level A_PPE for firefighters. The mobility test protocol and visibility test developed in this study can also be applied to other types of Level A impermeable PPE.

Sustainable Yield of Groundwater Resources of the Cheju Island (제주도 지하수자원의 최적 개발가능량)

  • Hahn, Jeong-Sang;Hahn, Kyu-Sang;Kim, Chang-Kil;Kim, Nam-Jong;Hahn, Chan
    • Journal of the Korean Society of Groundwater Environment
    • /
    • v.1 no.1
    • /
    • pp.33-50
    • /
    • 1994
  • The Hydrogeologic data of 455 water wells comprising geologic log and aquifer test were analyzed to determine hydrogeologic characteristics of the Cheju island. The groundwater. of the Cheju island is occurred in unconsolidated pyroclastic deposits and crinker interbedded in highly jointed basaltic and andesic rocks as high level, basal and parabasal types under unconfined condition. The average transmissivity and specific yield of the aquifer are at about 29,300㎡/day and 0.12 respectively, The total storage of groundwater is estimated about 44 billion cubic meters. Average annual precipitation is about 3,390 million ㎥ among which average recharge is estimated for 1,494 million ㎥ being equivalent 44.1% of total annual precipitation with 638 million ㎥ of runoff and 1,256 million ㎥ of evapotranspiration. Based on groundwater budget analysis, the sustainable yield is about 620 million ㎥(41% of annual recharge)and rest is discharging into the sea. The geologic logs of recently drilled thermal water wells indicate that very low-permeable marine sediments(Sehwa-ri formation) composed of loosely cemented sandy silt derived from mainly volcanic ashes at the 1st stage volcanic activity of the area is situated at the 120${\pm}$68m below sea level. Another low-permeable sedimentary rock called Seogipo-formation which is deemed younger than the former marine sediment is occured at the area covering north-west and western part of the Cheju island at the ${\pm}$70m below sea level. If these impermeable beds art distributed as a basal formation of fresh water zone of the Cheju island, the most of groundwater in the Cheju island will be para-basal type. These formations will be one of the most important hydrogeologic boundary and groundwater occurences in the area.

  • PDF