• Title/Summary/Keyword: Impedance matching circuit

Search Result 182, Processing Time 0.021 seconds

Study on a broadband quasi-Yagi antenna for mobile base station (이동통신 기지국용 광대역 quasi-Yagi 안테나에 관한 연구)

  • Lee, Jong-Ig;Yeo, Jun-Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.9
    • /
    • pp.4165-4170
    • /
    • 2012
  • In this paper, a method for the improvement in the gain and bandwidth of a microstrip-fed broadband planar quasi-Yagi antenna (QYA) is studied. The broadband characteristics of the QYA are achieved from the coplanar strip-fed planar dipole driver and a parasitic director close to the driver. In order to obtain stable gain variation over the required frequency band, a director and a ground reflector are appended to the driver having a nearby parasitic director. The QYA is fed through an integrated balun composed of a microstrip line and a slot line which are terminated in a short circuit. By adjusting the feeding point, a broadband impedance matching is obtained. A QYA with an operating frequency band of 1.75-2.7 GHz and a gain > 4.5 dBi is designed and fabricated on an FR4 substrate with dielectric constant of 4.4 and thickness of 1.6mm. The experimental results show that the fabricated antenna has good performance such as a broad bandwidth of 59.7%(1.55-2.87 GHz), a stable gain between 4.7-6.5 dBi, and a front-to-back ratio > 10 dB. The measured data agree well with the simulation, which validates this study.

Compact Half Bow-tie-type Quasi-Yagi Antenna for Terrestrial DTV Reception (지상파 디지털 방송 수신용 소형 반 보우 타이 형 준-야기 안테나)

  • Lee, Jong-Ig;Yeo, Junho;Park, Jin-Taek
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.4
    • /
    • pp.1908-1914
    • /
    • 2013
  • In this paper, we introduce a design method for a broadband planar quasi-Yagi antenna (QYA) for terrestrial digital television (DTV) reception. The coplanar strip line which feeds the driver dipole is connected to a microstrip line and is terminated by short circuit. By appending a wide strip-type rectangular director at a location close to the driver dipole, broadband impedance matching and gain enhancement in a high frequency region are obtained. The gain characteristics in a low frequency region are improved by adding a reflector formed by a truncated ground plane. To reduce the antenna size, the strip-type dipole and reflector are modified to half bow-tie (V)-shaped elements. The effects of various parameters on the antenna characteristics are examined. An antenna, as a design example for the proposed antenna, is designed for the operation in the frequency band of 470-806 MHz for terrestrial DTV. The optimized antenna is fabricated on an FR4 substrate and the experimental results show that the antenna has a good performance such as a frequency band of 450-848 MHz for a VSWR < 2, gain > 4.1 dBi, and front-to-back ratio > 10.4 dB.