• Title/Summary/Keyword: Impedance force control

Search Result 101, Processing Time 0.031 seconds

A Study on Implementation of Adaptive Fuzzy Impedance Controller (적응 퍼지 임피던스 제어기의 개발에 관한 연구)

  • Lim, Yong-Teak;Jang, Sung-Min;Kim, Weung-Woo
    • Proceedings of the KIEE Conference
    • /
    • 2000.07d
    • /
    • pp.2819-2821
    • /
    • 2000
  • We introduce Adaptive Fuzzy Impedance Controller for force control when robot contact with environment. Because robot and environment was always effected by nonlinear conditions. it needs to deal with parameter's uncertainty. As. it induced Fuzzy system in impedance controller. it used fuzzy inference logic that has robustness about uncertainty to tune impedance controller stiffness gain. We applied adaptive fuzzy impedance controller in One-Link Robot system and the method shows a good performance on desired position and force control with intensional contacting environment.

  • PDF

Implementation of Adaptive Impedance Controller using Fuzzy Inference (퍼지추론을 이용한 적응 임피던스 제어기의 구현)

  • Lim, Yong-Taek;Kim, Seung-Woo
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.50 no.9
    • /
    • pp.423-429
    • /
    • 2001
  • This paper proposes adaptive impedance control algorithm using fuzzy inference when robot contacts with its environments. The characteristics of the adaptive impedance controller is to adapt with parametric uncertainty and nonlinear conditions. The control algorithm is to join impedance controller with fuzzy inference engine. The proposed control method overcomes the problem of impedance controller using gain-tuning algorithm of fuzzy inference engine. We implemented an experimental set-up consisting of environment-generated one-link robot system and DSP system for controller development. We apply the adaptive fuzzy impedance controller to one-link root system, and it shows the good performance on regulating the interactive force in case of contacting with arbitrary environment.

  • PDF

Variable Impedance Control and Fuzzy Inference Based Identification of User Intension for Direct Teaching of a Mobile Robot (이동로봇의 직접교시를 위한 가변 임피던스제어와 퍼지추론 기반 사용자 의도 파악)

  • Ko, Jong Hyeon;Bae, Jang Ho;Hong, Daehie
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.33 no.8
    • /
    • pp.647-654
    • /
    • 2016
  • Controlling a mobile robot using conventional control devices requires skill and experience, and is not intuitive, especially in complex environments. For human-mobile robot cooperation, the direct-teaching method with impedance control has been used most frequently in complex environments. This thesis proposes a new direct-teaching method for a mobile robot utilizing variable impedance control. This includes analysis of user intention, which is changed by force and moment. A fuzzy inference technique is proposed in this thesis for identification of user intension. The direct teaching of a mobile robot based on variable impedance control through fuzzy inference is experimentally verified by comparing its efficiency to that of the conventional impedance control-based direct teaching of a mobile robot. Experimental data, such as the total time consumed, path error time, and the total energy used by the user, were recorded. The results showed that the efficiency of variable impedance control was increased.

Intelligent Force Control Ap plication of an Autonomous Helicopter System (자율 주행 헬리콥터 시스템의 지능 힘제어 응용)

  • Eom, Il Yong;Jung, Seul
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.6 no.5
    • /
    • pp.303-309
    • /
    • 2011
  • In this paper, an intelligent force control technique is applied to an autonomous helicopter. Although most research on the autonomous helicopter system is about navigation and control, force control of an autonomous helicopter system is quite new and not presented yet. After controlling the position of the helicopter by the LQR method, force control is applied. The adaptive impedance force control algorithm is introduced and tested to regulate the desired force under unknown location and stiffness of the environment. To compensate for uncertainty from outer disturbance, a neural network is added to form an intelligent force control framework. Simulation studies show that the proposed force control algorithm works well.

Tele-operated Control of an Autonomous Mobile Robot Using a Virtual Force-reflection

  • Tack, Han-Ho;Kim, Chang-Geun;Kang, Shin-Chul
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.3 no.2
    • /
    • pp.244-250
    • /
    • 2003
  • In this paper, the relationship between a slave robot and the uncertain remote environment is modeled as the impedance to generate the virtual force to feed back to the operator. For the control of a tele-operated mobile robot equipped with camera, the tele-operated mobile robot take pictures of remote environment and sends the visual information back to the operator over the Internet. Because of the limitation of communication bandwidth and narrow view-angles of camera, it is not possible to watch the environment clearly, especially shadow and curved areas. To overcome this problem, the virtual force is generated according to both the distance between the obstacle and robot and the approaching velocity of the obstacle. This virtual force is transferred back to the master over the Internet and the master(two degrees of freedom joystick), which can generate force, enables a human operator to estimate the position of obstacle in the remote environment. By holding this master, in spite of limited visual information, the operator can feel the spatial sense against the remote environment. This force reflection improves the performance of a tele-operated mobile robot significantly.

Sliding Mode Control of a Robot Manipulator by the Impedance Approach (임피던스 방식에 의한 로보트 매니퓰레이터의 슬라이딩 모드 제어)

  • 최형식
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.18 no.4
    • /
    • pp.25-32
    • /
    • 1994
  • This paper presents a robust impedance controller design to coordinate a robot manipulator under system uncertainties while regulating external forces. By an impedance approach, the relationship between the motion and external forces is defined. Due to the system uncertainties, two kind of sliding mode control schemes based on the impedance approach are derived to ensure that the manipulator end-effector follows a desired trajectory and the force applied to end effector is regulated according to a target impendance. A stability condition is shown according to a sliding condition. To evaluate the devised control scheme, a numerical example is shown.

  • PDF

3DOF Force-Reflecting interface (3자유도 힘 반향 역감장치)

  • 강원찬;박진석;김대현;신석두;김영동
    • Proceedings of the KIPE Conference
    • /
    • 1999.07a
    • /
    • pp.71-75
    • /
    • 1999
  • In this paper, we present the 3DOF force-reflecting interface which allows to acquire force of object within a virtual environment. This system is composed of device, virtual environment model, and force-reflecting rendering algorithm. We design a 3 DOF force-reflecting device using the parallel linkage, torque shared by wire, and the controller of system applied by impedance control algorithm. The force-reflecting behaviour implemented as a function position is equivalent to controlling the mechanical impedance felt by the user. Especially how force should be supplied to user, we know using a God-Object algorithm. As we experiment a system implemented by the interface of 3D virtual object and 3DOF force-reflecting interface, we can feel a contact, non-contact of 3D virtual object surface and sensing of push button model.

  • PDF

Hybrid impedance control for free and contact motion

  • Oh, Yonghwan;Chung, W. K.;Youm, Y.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1995.10a
    • /
    • pp.448-451
    • /
    • 1995
  • A general task execution with hybrid impedance control method is addressed. The target impedance is expressed in the constraint frame. For the computational simplicity and the robustness improvement, disturbance observer scheme is used. To make stable contact with the environment, the large value of desired inertia gain for the force-controlled subspace is suggested. Numerical examples are given to show the performance of the proposed controller.

  • PDF

Direct Teaching and Playback Algorithm for Peg-in-Hole Task using Impedance Control (펙인홀 작업을 위한 임피던스 제어 기반의 직접교시 및 재현 알고리즘)

  • Kim, Hyun-Joong;Back, Ju-Hoon;Song, Jae-Bok
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.5
    • /
    • pp.538-542
    • /
    • 2009
  • Industrial manipulators have been mostly used in large companies such as automakers and electronics companies. In recent years, however, demands for industrial manipulators from small and medium-sized enterprises are on the increase because of shortage of manpower and high wages. Since these companies cannot hire robot engineers for operation and programming of a robot, intuitive teaching and playback techniques of a robot manipulator should replace the robot programming which requires substantial knowledge of a robot. This paper proposes an intuitive teaching and playback algorithm used in assembly tasks. An operator can directly teach the robot by grasping the end-effector and moving it to the desired point in the teaching phase. The 6 axis force/torque sensor attached to the manipulator end-effector is used to sense the human intention in teaching the robot. After this teaching phase, a robot can track the target position or trajectory accurately in the playback phase. When the robot contacts the environment during the teaching and playback phases, impedance control is conducted to make the contact task stable. Peg-in-hole experiments are selected to validate the proposed algorithm since this task can describe the important features of various assembly tasks which require both accurate position and force control. It is shown that the proposed teaching and playback algorithm provides high positioning accuracy and stable contact tasks.

Implementation of an Embedded System for an Interaction between Robot Arm and Human Arm Based on Force Control (힘 제어 기반의 로봇 팔과 인간 팔의 상호 작용을 위한 임베디드 시스템 설계)

  • Jeon, Hyo-Won;Jung, Seul
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.11
    • /
    • pp.1096-1101
    • /
    • 2009
  • In this paper, an embedded system has been designed for force control application to interact between a robot arm and a human operator. Force induced by the human operator is converted to the desired position information for the robot to follow. For smooth operations, the impedance force control algorithm is utilized to represent interaction between the robot and the human operator by filtering the force. To improve the performance of position control of the robot arm, a velocity term has been obtained and tested by several filters. A PD controller for position control has been implemented on an FPGA as well. Experimental studies are conducted with the ROBOKER to test the functionality of the designed hardware.