• Title/Summary/Keyword: Impedance Transformer

Search Result 212, Processing Time 0.029 seconds

Electrical Characteristics of Step-down Piezoelectric Transformer (강압용 압전변압기의 전기적 특성)

  • 신훈범;유영한;안형근;한득영
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.07a
    • /
    • pp.389-392
    • /
    • 2001
  • In this paper, we have explained electrical characteristics of a step-down Rosen type piezoelectric transformer for AC-adapter. When the electric voltage is applied to the driving piezoelectric vibrator polarized in the longitudinal direction, then output voltage is generated at the generating piezoelectric vibrator polarized in the thickness direction due to the piezoelectric effects. Output voltage and current from a 11-layered and a 13-layered piezoelectric transformer were measured under the various conditions of loads and frequencies. We measured resonant frequency from impedance curve. It was shown from experiments that output voltage has increased and resonant frequency has changed according to various resistor loads. Output current has changed inversely proportional to resistances.

  • PDF

3-D Analysis of Leakage Impedances in a 1MVA HTS Transformer (1MVA고온초전도 변압기의 3차원 누설임피던스 해석)

  • 김성훈;김우석;최경달;주형길;홍계원;한진호;한송엽
    • Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
    • /
    • 2003.02a
    • /
    • pp.200-202
    • /
    • 2003
  • In this paper, 3-D electromagnetic analysis of a single phase 1MVA 22.9kV/6.6kV High Temperature Superconducting(HTS) transformer with double pancake windings by using the OPERA 3D was accomplished. And in order to perform the analysis of leakage impedances of a 1MVA HTS transformer, the energy conservation method was used. The efficiency voltage regulation and % impedance voltage drop of a 1MVA HTS transformer were obtained by the analysis of leakage impedances.

  • PDF

A Low Loss and Short-wavelength Transmission Line Employing Inverted Periodically Arrayed Capacitive Devices and Its Application to Miniaturized Passive Components on MMIC (저손실·단파장 특성을 가지는 반전된 형태의 주기적 용량성 선로구조와 MMIC상의 초소형 수동소자 개발에의 응용)

  • Yun, Young
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.36 no.1
    • /
    • pp.149-156
    • /
    • 2012
  • In this study, we propose a novel transmission line employing inverted PACD (Periodically Arrayed Capacitive Devices) for application to a development of miniaturized passive components on MMIC. The novel microstrip line employing Inverted PACD structure showed a loss much lower than conventional microstrip line. Using the inverted PACD structure, we fabricated a miniaturized impedance transformer on MMIC. the size of the impedance transformer was 0.012 $mm^2$, which is only 1.7% of conventional one. The impedance transformer showed good RF performances in a frequency range of 2.25~6.5 GHz.

Compact 1×2 and 2×2 Dual Polarized Series-Fed Antenna Array for X-Band Airborne Synthetic Aperture Radar Applications

  • Kothapudi, Venkata Kishore;Kumar, Vijay
    • Journal of electromagnetic engineering and science
    • /
    • v.18 no.2
    • /
    • pp.117-128
    • /
    • 2018
  • In this paper, compact linear dual polarized series-fed $1{\times}2$ linear and $2{\times}2$ planar arrays antennas for airborne SAR applications are proposed. The proposed antenna design consists of a square radiating patch that is placed on top of the substrate, a quarter wave transformer and $50-{\Omega}$ matched transformer. Matching between a radiating patch and the $50-{\Omega}$ microstrip line is accomplished through a direct coupled-feed technique with the help of an impedance inverter (${\lambda}/4$ impedance transformer) placed at both horizontal and vertical planes, in the case of the $2{\times}2$ planar array. The overall size for the prototype-1 and prototype-2 fabricated antennas are $1.9305{\times}0.9652{\times}0.05106{{\lambda}_0}^3$ and $1.9305{\times}1.9305{\times}0.05106{{\lambda}_0}^3$, respectively. The fabricated structure has been tested, and the experimental results are similar to the simulated ones. The CST MWS simulated and vector network analyzer measured reflection coefficient ($S_{11}$) results were compared, and they indicate that the proposed antenna prototype-1 yields the impedance bandwidth >140 MHz (9.56-9.72 GHz) defined by $S_{11}$<-10 dB with 1.43%, and $S_{21}$<-25 dB in the case of prototype-2 (9.58-9.74 GHz, $S_{11}$< -10 dB) >140 MHz for all the individual ports. The surface currents and the E- and H-field distributions were studied for a better understanding of the polarization mechanism. The measured results of the proposed dual polarized antenna were in accordance with the simulated analysis and showed good performance of the S-parameters and radiation patterns (co-pol and cross-pol), gain, efficiency, front-to-back ratio, half-power beam width) at the resonant frequency. With these features and its compact size, the proposed antenna will be suitable for X-band airborne synthetic aperture radar applications.

Design of Isolation-Type Matching Network for Underwater Acoustic Piezoelectric Transducer Using Chebyshev Filter Function (체비셰프 필터함수를 이용한 수중 음향 압전 트랜스듀서의 절연형 정합회로 설계)

  • Lee, Jeong-Min;Lee, Byung-Hwa;Baek, Kwang-Ryul
    • The Journal of the Acoustical Society of Korea
    • /
    • v.28 no.6
    • /
    • pp.491-498
    • /
    • 2009
  • This paper presents the design method of an impedance matching network using an isolation transformer and the Chebyshev filter function for the high efficiency and the flat power driving of an underwater acoustic piezoelectric transducer. The proposed impedance matching network is designed for minimizing the reactance component of transducer and having the flat power response in the wide frequency range. We design a low pass filter with ladder-type circuit using the Chebyshev function as standard prototype filter function. In addition, we design the impedance matching network which is suitable for the equivalent circuit of transducer and the turn ratio of transformer through the bandpass frequency transformation. The proposed method is applied to the simulated dummy load of the tonpilz-type transducer operating in the middle frequency range. The simulation results are compared with the measured characteristics and the validity of the proposed method is verified.

A Transformer-Matched Millimeter-Wave CMOS Power Amplifier

  • Park, Seungwon;Jeon, Sanggeun
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.16 no.5
    • /
    • pp.687-694
    • /
    • 2016
  • A differential power amplifier operating at millimeter-wave frequencies is demonstrated using a 65-nm CMOS technology. All of the input, output, and inter-stage network are implemented by transformers only, enabling impedance matching with low loss and a wide bandwidth. The millimeter-wave power amplifier exhibits measured small-signal gain exceeding 12.6 dB over a 3-dB bandwidth from 45 to 56 GHz. The output power and PAE are 13 dBm and 11.7%, respectively at 50 GHz.

Fabrication and Characteristics of Piezoelectric transformer using PMN-PZT (PMN-PZT 세라믹을 사용한 압전트랜스포머 제작과 특성)

  • 류주현;손은영;류규현;윤현상;정희승
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1997.11a
    • /
    • pp.13-20
    • /
    • 1997
  • In this paper, the voltage step-up ratio, efficiency and input impedance of the PMN-PZT cert- mic transformer(PT) were investigated for the variation of resonant frequency according to lead resistance. The output voltage and voltage step-up ratio are increased with the the increase of load resistance. The efficiency of PT showed the maxinum value of 91% at R$_{L}$ of 500k$\Omega$X>

  • PDF

The power distribution of the open delta connected transformers due to unbalance of the impedances (변압기(變壓器) V결선(結線)에서의 Impedance 불평형(不平衡)으로 의한 전력분배(電力分配))

  • O, Cheol-Su
    • Proceedings of the KIEE Conference
    • /
    • 1985.07a
    • /
    • pp.26-28
    • /
    • 1985
  • The open delta circuit of the power transformer is still often applied, in spite of its reduced utilization of the power. In this paper, a new approach to the calculation of the power and its distribution in each transformer component is presented. For the power evaluation, the method of the complex power analysis is applied.

  • PDF

Output Power characteristics of the Piezoelectric Transformer for LCO Backlight with Piezoelectric and Piezoelectric Properties (유전 및 압전특성에 따른 LCD Backlight용 압전 트랜스포머의 출력전력특성)

  • 민석규;류주현;정회승;홍재일;윤현상;손은영
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.07a
    • /
    • pp.852-856
    • /
    • 2000
  • In this paper, we investigated the output power, step-up ratio and efficiency properties of piezoelectric transformer with dielectric and piezoelectric characteristics of manufactured ceramics. The piezoelectric transformers with $2.0$\times$10$\times$48[$mm^3$] size were fabricated and its electrical properties were measured. When output power of 6W was constantly maintained, T2 piezoelectric transformer showed the minimum temperature rise of $9(^{\circ}C)$ at $150(K\Omega)$ load resistance. However, T1 piezoelecric transformer showed the temperature rise of $7.2(^{\circ}C)$ at $200(K\Omega)$ load resistance. The 6[w] CCFL (Cold Cathode Fluorescent Lamp) was successfully driven by T1 and T2 piezoelectric transformer but, its temperature rise $\Delta$T[$^{\circ}C)$] was generated more than $20(^{\circ}C)$. It is concluded that we have to design the piezoelectric transformers so that its output impedance correspond to the load impeadance, including any stray capacitance.

  • PDF

Transistor Wide-Band Feedback Amplifiers (트랜지스터 광대역궤환증폭기)

  • 이병선;이상배
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.5 no.1
    • /
    • pp.13-25
    • /
    • 1968
  • A detailed analysis of the transistor wide-band feedback amplifiers using the hybrid-$\pi$ equivalent circuit has been made. It is considered both for the low freqnency and for the high frequency. The expressions of the gain, bandwidth. input impedance and output impedance have been presented. It is shown that a series feedback amplifier should be driven from the voltage source and should drive into the low resistance load, and a shunt feedback amplifier should be driven from the current source and should drive into the high resistance load. It is also shown that these stages can be coupled without use of the buffer stage or coupling transformer.

  • PDF