• Title/Summary/Keyword: Impedance Measurement

Search Result 872, Processing Time 0.029 seconds

Miniaturized X-Band Metamaterial Filter for the Ultra-Wide Stopband (차단특성의 초광대역화를 위한 X-밴드용 초소형 메타물질구조 여파기)

  • Kahng, Sung-Tek;Lim, Dong-Jin;Jang, Geon-Ho
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.46 no.12
    • /
    • pp.59-64
    • /
    • 2009
  • In this paper, the design of a new bandstop filter with an ultra-wide stopband is proposed using the metamaterial CRLH-TL. Instead of conventional periodic structures and multi-staged CRLH-TLs, extremely small one-cell type is adopted to circumvent the setbacks of conventional filters such as the lengthened ${\lambda}_g/2$-resonator ones or alternating impedance lowpass filter, and relatively slow skirt. Besides, for a very broad stopband, a strong coupling structure including stepped impedances is suggested and the zero-order resonance is made for effective size-reduction. The validity of the proposed design is proven through the fabrication and measurement, showing the overall size less than ${\lambda}_g/10$, the stopband wider than 12 GHz, 0.7 dB of the insertion loss.

Active Damping of LCL Filter for Three-phase PWM Inverter without Additional Hardware Sensors (추가적인 센서가 필요 없는 3상 PWM 인버터의 LCL 필터 능동댐핑)

  • An, Byoung-Woong;Shin, Hee-Keun;Kim, Hag-Wone;Cho, Kwan-Yuhl;Han, Byoung-Moon
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.18 no.1
    • /
    • pp.10-17
    • /
    • 2013
  • In this paper, a new active damping method of LCL filter without capacitor voltage sensors is proposed for 3 phase PWM Inverter. Normally, L filter or LCL filter is used as an output filter of grid connected PWM inverter. An LCL filter has more excellent performance than L filter to reduce harmonic current, so the small inductance value can be used. However, the resonance problem in LCL filter is happen due to the zero impedance by the addition of LC branch. To solve the resonance problem, the various active damping method has been proposed so far. Generally, the virtual resistor active damping methods is required to additional hardware sensors for measurement of capacitor voltage and current. In this paper, the new active damping method is proposed without any capacitor voltage or current sensors. In the proposed method, the resonance component of the capacitor voltage of LCL filter can be observed by a simple MRAS(Model Reference Adaptive System) observer without additional hardware sensors, and this component is suppressed by feedforward compensation. The validity of the proposed method is proven by simulation and experiment on the 3-phase PWM inverter system.

Electromagnetic Simulation of Ring-shaped Electrodeless fluorescent Lamps and its Electrical and Optical Characteristics (환형 무전극 형광램프의 전자계 시뮬레이션, 전기적 및 광학적 특성)

  • 최용성;조주웅;이영환;김광수;박대희
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.17 no.5
    • /
    • pp.552-559
    • /
    • 2004
  • In recent, there have been several developments in lamp technology that promise savings in electrical power consumption and improved quality of the lighting space. Above all, the advantage of ring-shaped electrodeless fluorescent lamp is the removal of internal electrodes and heating filaments that are a light-limiting factor of conventional fluorescent lamps. The ring-shaped electrodeless lamp is intended as a high efficiency replacement for the incandescent reflector lamp in many applications. Therefore, the life time of ring-shaped electrodeless fluorescent lamps is substantially higher than that of conventional fluorescent lamps and last up to 60,000 hours. In this paper, maxwell 3D finite element analysis program(Ansoft) was used to obtain electromagnetic properties associated with the coil and nearby structures. The electromagnetic emitting properties were presented by 3D simulation software operated at 250 KHz and some specific conditions. The optical characteristics were measured luminance and a temperature and an optical spectrum distribution for 10 min in a one minute interval at the same time. With a goal of finding alternative materials, we show measurement results of electrical characteristics of a ring-shaped electrodeless fluorescent lamp as a function of frequency and the number of coil turns using a highly permeable($\mu$$_{r}$(equation omitted) 2,000) Mn-Zn ferrite. These results are compared with those of conventional ring-shaped electrodeless fluorescent lamp. It is found that the resistance, inductance and impedance are increased while the quality factor decreases as frequency increases.s.

Design of a PCB-Embedded Antenna for Bluetooth Applications (블루투스용 PCB 임베디드 안테나 설계)

  • Kim, Yun-Mi;Park, Myoung-Shil;Chyung, Ji-Young;Jung, Hae-Mi;Ahn, Bierng-Cherl
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.11 no.5
    • /
    • pp.98-104
    • /
    • 2006
  • In this parer, proposed a Miniature inverted F Antenna for Bluetooth applications using folded structure and confirm it through producing and measurement. The proposed antenna as PIFA is optimized the impedance matching and the radiation pattern by positioning of feed line and short line. This antenna is designed with Microwave Studio presented CST and the optimized antenna structure is fabricated. The optimized miniature antenna size is 17.3 * 6 * 0.8 mm, the measured return loss bandwidth is 220MHz at 2.45GHz, the radiation pattern is quasi omni, and the gain is -1 dBi. these results are similar to the simulation data. It is comparatively appropriate for Bluetooth system.

  • PDF

Analysis and fabrication of a wearable antenna using conductive fibers (전도성 실 재질을 이용한 웨어러블 안테나의 제작 및 분석)

  • Nguyen, Tien Manh;Chung, Jae-Young
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.4
    • /
    • pp.2770-2776
    • /
    • 2015
  • The development of efficient wearable antennas is required to implement short range body-centric wireless communication links for various internet of thing applications. We present simulation and measurement results of conductive-fiber-based wearable antennas which can comfortably fabricated directly on usual clothing materials. The proposed antenna is a form of a rectangular patch antenna designed by weaving conductive fibers on a felt substrate. A full-wave electromagnetic simulation tool is used to investigate the antenna performance such as antenna impedance, resonant frequency, and radiation efficiency. Parametric studies show that the radiation efficiency increases from 67.5% to 70.4% by widening the gap between conductive fibers from 0.25mm to 3mm. This implies a wearable antenna with good radiation efficiency can be designed despite of less portion of conductive fibers on the antenna. The simulation results are also verified by measured results with fabricated antennas.

Design and Implementation of a 100 W Receiver for Wireless Power Transfer Using Coupled Magnetic Resonance (자기공명 무선전력전송용 100 W급 수신기 설계 및 제작)

  • Kim, Seong-Min;Cho, In-Kui;Choi, Hyun-Chul
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.27 no.1
    • /
    • pp.84-87
    • /
    • 2016
  • In this paper, a receiver for wireless power transfer is proposed. The receiver consists of a 100 W rectifier in 1.8 MHz frequency band, and a constant current charger. In particular, two kinds of protection circuits are installed in the rectifier. They are a over-voltage protection circuit which block the input voltages greater than 30 V and a active-dummy load which maintains the receiver input impedance by automatically consuming the remaining input power. The constant current charger is designed to charge the battery with a charging current of up to 1 A. A wireless charging system is fabricated using the proposed receiver. The system is composed of a 130 W transmitter, two magnetic resonator, and proposed receiver for charging a 48 V Li-Ion battery using the coupled magnetic resonance method. By the measurement result, the system efficiency is about 54 %.

Reconfigurable Polarization Patch Antenna with Y-Shaped Feed (Y형태의 급전 구조를 이용한 편파 변환 재구성 패치 안테나)

  • Lee, Da-Ae;Sung, Youngje
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.25 no.1
    • /
    • pp.1-9
    • /
    • 2014
  • In this paper, a reconfigurable polarization patch antenna that uses a Y-shaped feed is proposed. The proposed antenna consists of a square patch, a Y-shaped feeding structure, a PIN diode, and a bias circuit for diode operation. The structural symmetry/asymmetry of the feeding structure is determined by the on/off operation of the PIN diode that inserted into the side of one of the lines of the Y-shaped feeding structure. For the proposed reconfigurable antenna, the two microstrip lines of the feeding structure have the same length when the PIN diode operates in the on state, and the antenna exhibits linear polarization(LP). On the other hand, when the PIN diode operates in the off state, the length of one side line of the feeding structure is relatively shorter than that of the other line. Therefore, the antenna exhibits circular polarization(CP). From the measurement results, it is found that the proposed antenna exhibits good impedance matching and axial ratio. In addition, polarization switching can be easily achieved in the same operating band.

Effect of M2O3 on the Sinterbility and Electrical Conductivity of ZrO2(Y2O3) System(III) : Ceramics of the ZrO2-Y2O3-Ln2O3 System (ZrO2(Y2O3)계 세라믹스의 소결성과 전기전도도에 대한 M2O3의 영향(III) : ZrO2-Y2O3-Ln2O3계 세라믹스)

  • 오영제;정형진;이희수
    • Journal of the Korean Ceramic Society
    • /
    • v.24 no.2
    • /
    • pp.123-132
    • /
    • 1987
  • Yttria-stabilized zirconia with erbia-lanthana were investigated with respect to the amount of Ln2O3 (Ln; Er, La) addition in the range of 0.5∼5 mol% to the base composition of 8 mol% yttriazirconia. Following analysis and measurement were adopted for the characterization of synthesizes of solid electrolyte; phase transformation, lattice parameter, crystallite size, relative density, chemical composition and SEM/EDS. Electrical conductivity by two-probe method versus temperature from 350$^{\circ}C$ to 800$^{\circ}C$ and frequency in the range of 5Hz∼13MHz by complex impedance method was also conducted together with the determination of oxygen ion transference number by EMF method for the evaluation of their electrical properties. The results were as followsing; Electrical conductivity were decreased with increase in Ln2O3 content, but their activation energies increased. In the case of La2O3 addition, espicially, its electrical conductivity was decreased owing to the segregation of second phases at the grain-boundary. Grain-boundary conductivity of the specimen contained 0.5 mol% Er2O3 exhibited a maximum conductivity among thecompositions experimented. However, their bulk conductivities decreased in both case. Oxygen ion transference number was also reduced with decrease in oxygen partial pressure. For example, in the case of Er2O3 addition it retained value in the range of 0.97∼0.94 abvove 4.74${\times}$10-2in oxygen partial pressure. With the increase in the quantities of the evaporation of additive components, the crystallite size of stabilized zirconia decreased, and their relative density also reduced owing to the formation of porosity in their matrices. In the case of La2O3 the sinterbility was improved in the limited amount of addition up to 0.5 mol%, in the same range of addition the strength of sintered bodies were improved perhaps owing to the precipitation of metastable tetragonal phase in the fully stabilized zirconia.

  • PDF

Design of Wide Band Antennas for Mobile Communications (이동통신용 광대역 패치 안테나 설계)

  • Kim, Jang-Wook
    • Journal of the Korea Society of Computer and Information
    • /
    • v.18 no.3
    • /
    • pp.27-34
    • /
    • 2013
  • A wideband patch antenna fed by an L-strip feeder is studied. The objective of this paper is to design small wideband antenna for 3G and 4G wireless mobile communication service. The enhanced features were confirmed and proved by comparing the proposed antenna with the antennae that have been reported in the relevant literatures. Measurement results confirm that an impedance bandwidth($VSWR{\leq}2$) of 636MHz(32.5%, fo=1,960MHz) is achieved at 3G and 4G frequency band for L-strip-fed triangular patch antenna. In general, probe feed has only the parasitic reactance caused by the probe, which reduces the bandwidth performance of the antenna. The experimental results proved that the effects of improvement could be achieved because the proposed antenna is capable of compensating the parasitic reactance from the feeding mechanism. The studied antenna can be designed easily for extension of array because it has simple structure.

Synthesis of Carbon Nanotubes Supported PtCo Electrocatalysts and Its Characterization for the Cathode Electrode of PEMFC (탄소나노튜브에 담지된 PtCo 촉매 제조 및 PEMFC Cathode 전극 특성)

  • Jung, Dong-Won;Park, Soon;Kang, Jung-Tak;Kim, Jun-Bom
    • Korean Journal of Materials Research
    • /
    • v.19 no.5
    • /
    • pp.233-239
    • /
    • 2009
  • The electrocatalytic behavior of the PtCo catalyst supported on the multi-walled carbon nanotubes (MWNTs) has been evaluated and compared with commercial Pt/C catalyst in a polymer electrolyte membrane fuel cell(PEMFC). A PtCo/MWNTs electrocatalyst with a Pt:Co atomic ratio of 79:21 was synthesized and applied to a cathode of PEMFC. The structure and morphology of the synthesized PtCo/MWNTs electrocatalysts were characterized by X-ray diffraction and transmission electron microscopy. As a result of the X-ray studies, the crystal structure of a PtCo particle was determined to be a face-centered cubic(FCC) that was the same as the platinum structure. The particle size of PtCo in PtCo/MWNTs and Pt in Pt/C were 2.0 nm and 2.7 nm, respectively, which were calculated by Scherrer's formula from X-ray diffraction data. As a result we concluded that the specific surface activity of PtCo/MWNTs is superior to Pt/C's activity because of its smaller particle size. From the electrochemical impedance measurement, the membrane electrode assembly(MEA) fabricated with PtCo/MWNTs showed smaller anodic and cathodic activation losses than the MEA with Pt/C, although ohmic loss was the same as Pt/C. Finally, from the evaluation of cyclic voltammetry(CV), the unit cell using PtCo/MWNTs as the cathode electrocatalyst showed slightly higher fuel cell performance than the cell with a commercial Pt/C electrocatalyst.