• Title/Summary/Keyword: Impedance Measurement

Search Result 872, Processing Time 0.028 seconds

Online Parameter Estimation for Wireless Power Transfer Systems Using the Tangent of the Reflected Impedance Angle

  • Li, Shufan;Liao, Chenglin;Wang, Lifang
    • Journal of Power Electronics
    • /
    • v.18 no.1
    • /
    • pp.300-308
    • /
    • 2018
  • An online estimation method for wireless power transfer (WPT) systems is presented without using any measurement of the secondary side or the load. This parameter estimation method can be applied with a controlling strategy that removes both the receiving terminal controller and the wireless communication. This improves the reliability of the system while reducing its costs and size. In a wireless power transfer system with an LCCL impedance matching circuit under a rectifier load, the actual load value, voltage/current and mutual inductance can be reflected through reflected impedance measuring at the primary side. The proposed method can calculate the phase angle tangent value of the secondary loop circuit impedance via the reflected impedance, which is unrelated to the mutual inductance. Then the load value can be determined based on the relationships between the load value and the secondary loop impedance. After that, the mutual inductance and transfer efficiency can be computed. According to the primary side voltage and current, the load voltage and current can also be detected in real-time. Experiments have verified that high estimation accuracy can be achieved with the proposed method. A single-controller based on the proposed parameter estimation method is established to achieve constant current control over a WPT system.

A Study on Impedance Change Trend and Battery Life Analysis through Battery Performance Deterioration Factors

  • Mi-Jin Choi;Young-Jun Kim;Sang-Bum Kim
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.15 no.3
    • /
    • pp.129-134
    • /
    • 2023
  • Although the use of batteries is rapidly increasing worldwide to improve carbon neutrality and energy efficiency, performance degradation due to the increase in the number of uses is inevitable as it is a finite resource that can be applied according to capacity and specifications. Deterioration and failure of batteries are recognized as important problems in various applications using batteries, including electric vehicles. In order to solve these problems, a diagnostic technology capable of accurately predicting battery life and grasping state information is required, but it is difficult in a non-linear form due to internal structure or chemical change. In this paper, the factors that generally cause battery performance change are directly applied to check whether there are external changes and impedance changes in the battery, and to analyze whether they affect battery life. Impedance change trends and result values were confirmed using a universal impedance spectroscopy method and a self-developed internal impedance measurement method. The results did not significantly affect the impedance change trend. It was confirmed that the increase in the number of times of battery use was prominent in the impedance change trend.

A Numerical Analysis on the System Impedance in a Fan Cooling System (Fan 냉각장치에서 System 저항에 관한 수치해석)

  • Kim, Dong-Il;Bok, Ki-So;Lee, Seung-Gyu
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.1424-1429
    • /
    • 2004
  • To seek the fan operating point on a cooling system with fans, it is very important to determine the system impedance and it has been usually examined with the fan tester(wind tunnel) based on ASHRAE standard and AMCA standard. This leads to a large investment in time and cost, because it could not be executed until the system is made actually. Therefore it is necessary to predict the system impedance curve through numerical analysis so that we could reduce the measurement effort. This paper presents how the system impedance curve (pressure drop curve) is computed by CFD in substitute for experiment. In reverse order to the experimental principle of the fan tester, pressure difference was adopted first as inlet and outlet boundary conditions of the system and then flow rate was calculated.

  • PDF

Measurement of the acoustic impedance by using beamforming method in a free-field (자유 음장에서 빔형성 방법을 이용한 음향 임피던스 측정)

  • Sun, Jong-Cheon;Shin, Chang-Woo;Baek, Sun-Gwon;Kang, Yeon-June
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.969-974
    • /
    • 2007
  • In this paper, a beamforming technique is introduced to measure the acoustic impedance at both normal and oblique incidence in a free field. The acoustic impedance is obtained by separating incident and reflected signals using the adaptive nulling method which is one of the various beamforming algorithms. To obtain better results, pressure vector commonly used in array signal processing is replaced with the transfer function vector between each microphone and the white Gaussian noise is suppressed by a wavelet shrinkage technique. The experiments conducted in a semi-anechoic room show that the proposed method is efficient and accurate in measuring the acoustic impedance of sound absorbing materials under a free field condition.

  • PDF

Performance Analysis of Single Crystal Solar Cell by Impedance Measurement (임피던스 측정법을 이용한 단결정태양전지의 성능 특성 분석)

  • Jung, You-Ra;Choi, Yong-Sung;Hwang, Jong-Sun;Lee, Kyung-Sup
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.202-202
    • /
    • 2010
  • This study focused on the characteristics of single crystal solar cell using the impedance technique. In this experiment, the impedance was measured according to frequency's from 1mHz until 2MHz. The solar cell is R-L-C series circuit. Capacitance reactance was changed according to changing from low frequency to high frequency. It could know that the impedance was changed according to the frequency increases in solar cell.

  • PDF

Study on the Railway Fault Locator Impedance Prediction Method using Field Synchronized Power Measured Data (실측 동기화 데이터를 활용한 교류전기철도의 고장점표정장치 임피던스 예측기법 연구)

  • Jeon, Yong-Joo;Kim, Jae-chul
    • Journal of the Korean Society for Railway
    • /
    • v.20 no.5
    • /
    • pp.595-601
    • /
    • 2017
  • Due to the electrification of railways, fault at the traction line is increasing year by year. So importance of the fault locator is growing higher. Nevertheless at the field traction line, it is difficult to locate accurate fault point due to various conditions. In this paper railway feeding system current loop equation was simplified and generalized though measured data. And substation, train power data were measured under synchronized condition. Finally catenary impedance was predicted through generalized equation. Also simulation model was designed to figure out the effect of load current for train at same location. Train current was changed from min to max range and catenary impedance was compared at same location. Finally, power measurement was performed in the field at train and substation simultaneously and catenary system impedance was predicted and calculated. Through this method catenary impedance can be measured more easily and continuously compared to the past method.

Development of the Low Cost Impedance Spectroscopy System for Modeling the Electrochemical Power Sources (전기화학적 전력 기기의 모델링을 위한 저가의 임피던스 분광 시스템의 개발)

  • Lee, Ju-Hyung;Choi, Woo-Jin
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.13 no.1
    • /
    • pp.46-54
    • /
    • 2008
  • In this paper, a low-cost impedance spectroscopy system(LCISS) suitable for modeling the electrochemical power sources such as fuel cells, batteries and supercapacitors is designed and implemented. Since the developed LCISS is composed of simple sensor circuits, commercial data acquisition board and LabVIEW software, a graphic language with powerful HMI(Human-Machine Interface), it is expected ta be widely used in substitution of the expensive EIS instruments. In the proposed system, the digital lock-in amplifier is adopted to achieve the accurate measurements even in the presence of the high level of noises. The developed hardware and software is applied to measure the impedance spectrum of the Ballard Nexa 1.2kW proton exchange membrane fuel cell stack and an equivalent impedance model is proposed based on the measurement results. The validity of the proposed equivalent circuit and the developed system is proven by the measurement of the ac power losses of the PEM fuel celt stack by the ripple current.

Impedance Changes of Living Tissue During Radiation Exposure Dose (방사선 피폭선량에 대한 생체 조직의 임피던스 변화)

  • Kil, Sang Hyeong;Lee, Moo Seok;Nam, Ji Ho;Lee, Yeong Hwa;Kim, Gun Do;Lee, Jong Kyu
    • Journal of Radiation Protection and Research
    • /
    • v.38 no.4
    • /
    • pp.202-207
    • /
    • 2013
  • Bioimpedance involves a lot of information related to living tissue. If there is alteration in bio tissue, its electrical characteristics also change. It is to study electrical characteristics of pork tenderlion in using a HP-4194A Impedance/Gain-phase analyzer instrument and electrical characteristics changes by graded radiation exposure dose. The results were as follow 1. Electrical characteristics of pork tenderlion in repeated measurement had high precision within ${\pm}5$% of coefficiency of variability. 2. During the measurement impedance absolute value and phase alteration did not show statistically significant difference.(p>0.05) 3. While impedance phase of electrical characteristics associated with frequency change was almost stable, impedance absolute value was in inverse proportion to frequency that means high inverse correlation of -0.096(r). 4. Impedance absolute value dropped in radiation exposure dose. The alteration of the value did not show statistically significant difference in 1 Gy, 2 Gy and 4 Gy.(p>0.05) However in radiation exposure dose of 10 Gy, the decrease of impedance absolute value was significantly different.(p<0.05) 5. Impedance phase according to radiation exposure dose change did not show statistically significant difference in 1 Gy, 2 Gy, 4 Gy, and 10 Gy(p>0.05).

Evaluation of the Accuracy of Grounding Impedance Measurement of Grounding Grid (접지그리드의 접지임피던스 측정의 정확도 평가)

  • Choi, Jong-Hyuk;Choi, Young-Chul;Jeong, Dong-Cheol;Kim, Dong-Seong;Lee, Bok-Hee
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.23 no.12
    • /
    • pp.146-153
    • /
    • 2009
  • Recently, the common grounding systems are adapted in most large structures. Since the ground resistance is insufficient to evaluate the performance of grounding systems, it is needed to measure grounding impedance. Even though the methods of measuring grounding impedance of large grounding systems are presented in IEEE standard 81.2, but they have not been described in detail. In this paper, we present the accurate method of measuring grounding impedance based on the revised fall-of-potential method and measurement errors due to earth mutual resistance and ac mutual coupling depending on locating test electrodes at remote earth were examined for the 15[m]$\times$15[m] grounding grid. As a result, the measurement error due to earth mutual resistance is decreased when the distance to auxiliary electrodes increased. To get rid of measurement errors due to mutual coupling, the potential lead should be installed at a right angle to the current lead. When the angle between the potential and the current leads is an acute angle or an obtuse angle, the mutual couple voltage is positive or negative, respectively. Generally, the measurement errors due to mutual coupling with an obtuse angle route are lower than those with an acute angle route.

The Automatic Precision Measurement of RF Voltage using Power and Impedance Standards (전력과 임피던스표준을 이용한 RF전압의 정밀 자동측정)

  • Shin, Jin-Kook
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.3A
    • /
    • pp.319-323
    • /
    • 2007
  • In this paper, the automatic precision measurement of RF voltage has been done using the power and impedance standards [1] in the frequency range of 50 to 1000 MHz. A coaxial microcalorimeter and an automatic network analyzer were used for the determination of the RF-DC differences and the total uncertainty is about 1.0 %. A HP computer, a commodore computer and IEEE-488 interface bus were used for measuring the effective efficiency of thermistor mount and the RF-DC difference of thermal voltage converter, All processes of measurement were accomplished by self-developed program automatically.