• 제목/요약/키워드: Impacting droplet

검색결과 28건 처리시간 0.106초

고온 벽면과 충돌하는 단일 액적의 거동에 관한 연구 (A Study on the Behavior of a Droplet Impacting onto a Heated Surface)

  • 강보선;이동환
    • 대한기계학회논문집B
    • /
    • 제23권7호
    • /
    • pp.871-880
    • /
    • 1999
  • In this paper an experimental study is presented of the problem of dynamic behavior of a water droplet impinging upon a heated surface. The experiments are mainly focused on the effects of impinging angle of a droplet and surface temperature on the impact dynamics of the droplet. It Is clarified that the droplet exhibits much different behavior depending on the normal momentum of an impinging droplet before impact. At surface temperature In the nucleate boiling regime. the disintegration of a droplet doesn't occur, whereas the deforming droplet adheres to the surface. The spreading and contraction of the liquid film is repeated a couple of times for the horizontal surface but the expanded droplet just slips without noticeable contraction for the inclined surfaces. In the film boiling regime, the impinging droplet spreads over the surface as a liquid film which is separated from the surface by produced vapor. Depending on the magnitude of the normal momentum of the droplet the disintegration into the several irregular shapes of liquid elements occurs for the horizontal and 30o-inclined surfaces, whereas the impinging droplet for the 60o-inclined surface doesn't break up and tends to recover the original spherical shape.

Development of a Water Droplet Erosion Model for Large Steam Turbine Blades

  • Lee, Byeong-Eun;Riu, Kap-Jong;Shin, Se-Hyun;Kwon, Soon-Bum
    • Journal of Mechanical Science and Technology
    • /
    • 제17권1호
    • /
    • pp.114-121
    • /
    • 2003
  • Water droplet erosion is one of major concerns in the design of modern large fossil steam turbines because it causes serious operational problems such as performance degradation and reduction of service life. A new erosion model has been developed in the present study for the prediction of water droplet erosion of rotor blades operated in wet steam conditions. The major four erosion parameter : impact velocity, impacting droplet flow rate, droplet size and hardness of target are involved in the model so that it can also be used for engineering purpose at the design stage of rotor blades. Comparison of the predicted erosion rate with the measured data obtained from the practical steam turbine operated for more than 90,000 hours shows good agreement.

표면 젖음성이 스프레드-스플래시 영역 간 천이 조건에 미치는 효과 (Surface Wetting Effect on Spread-Splash Transition Criterion)

  • 류성욱;이상용
    • 한국분무공학회지
    • /
    • 제12권4호
    • /
    • pp.198-203
    • /
    • 2007
  • In the present work, surface wetting effect on spread-splash regime and transition criterion of the water and ethanol droplets impacting an unheated dry wall has been experimentally investigated. The droplet was directed on a polished STS plate and a glass slide, and the impinging behavior was visualized and recorded using a CCD camera. Droplet diameter and velocity approaching the wall were measured as well. The critical Sommerfeld number representing the spread-splash boundary for the ethanol droplet impinging on the substrates turned out to be smaller compared to that for the water droplet impinging on the substrates with the surface roughness condition remained unchanged. The shift of the transition boundary is considered to be due to the effect of the surface wettability represented by static contact angle and surface tension of droplet.

  • PDF

표면 결함이 있는 모재에 대한 용사 공정에서 용응 금속 액적의 충돌현상과 응고 과정 해석 (A Study on the Impact and Solidification of the Liquid Metal Droplet in the Thermal Spray Deposition onto the Substrate with Surface Defects)

  • 하응지;김우승
    • 대한기계학회논문집B
    • /
    • 제26권11호
    • /
    • pp.1597-1604
    • /
    • 2002
  • In this study, numerical investigation has been performed on the impingement, spreading and solidification of a coating material droplet impacting onto a solid substrate in the thermal spray process. The numerical model is validated through the comparison of the present numerical result with experimental data fer the flat substrate without surface defects. An analysis of deposition formation on the non-polished substrate with surface defects is also performed. The parametric study is conducted with various surface defect sizes and shapes to examine the effect of surface defects on the impact and solidification of the liquid droplet on the substrate.

용사 공정에서 용융 금속 액적의 충돌현상과 응고 과정 해석 (A Study on the impact and solidification of the liquid metal droplet in the thermal spray deposition)

  • 하응지;김우승
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집D
    • /
    • pp.214-219
    • /
    • 2001
  • In this study, numerical investigation has been performed on the spreading and solidification of a droplet impacting onto a solid substrate in the thermal spray process. The finite difference method with volume-of-fluid approach is used to analyze the free surface flow and the source-based enthalpy method is employed to model the latent heat release during the solidification. In this work, the numerical model is validated through the comparison of the present numerical result with experimental data available for the flat substrate.

  • PDF

분사압력변화가 충돌분무특성에 미치는 영향에 관한 수치적 고찰 (Numerical Analysis of the Effect of Injection Pressure Variation on Impaction Spray Characteristics)

  • 김승철
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제23권1호
    • /
    • pp.47-53
    • /
    • 1999
  • Small compression-ignition direct injection engines have been developed as a measure to improve a fuel efficiency and reduce harmful exhaust gases. Those small engines generally employ high injection pressure increase on the spray impacting on a wall is discussed in this paper. The gas phase is modelled by the Eulerian continuum conservation equations of mass momentum energy and fuel vapour fraction. The liquid phases is modelled following the discrete droplet model approach in Lagrangian form and the droplet wall interaction is modelled as a func-tion of the velocity normal to impaction lands. The droplet distributions vapor fractions and gas flows are analyzed in various injection pres-sure cases. The penetrations of wall spray and vapor increase and the Sauter mean diameter decreases with increasing injection pressure.

  • PDF

초음파진동을 이용한 미세분무냉각 열전달에 관한 실험적 연구 (The Experimental Study on Mist Cooling Heat Transfer)

  • 김영찬
    • 한국분무공학회지
    • /
    • 제15권4호
    • /
    • pp.202-207
    • /
    • 2010
  • Mist cooling is widely employed as a cooling technique of high temperature surfaces, and it has heat transfer characteristics similar to boiling heat transfer which has the convection, nucleate and film boiling regions. In the present study, mist cooling heat transfer was experimentally investigated for the mist flow impacting on the heated surfaces of mico-fins. The mist flow was generated by supersonic vibration. Experiments were conducted under the test conditions of droplet flow rate, $Q=6.02{\times}10^{-9}{\sim}3.47{\times}10^{-8}\;m^3/s$ and liquid temperature, $T_f=30{\sim}35^{\circ}C$. From the experimental results, it is found that an increase in the droplet flow rate improves mist cooling heat transfer in the both case of smooth surface and surfaces of micro-fins. Micro-fins surfaces enhance the mist cooling heat transfer. Besides, the experimental results show that an increase in the droplet flow rate decrease the heat transfer efficiency of mist cooling.

기울어진 미세 텍스쳐 표면에 충돌하는 단일 액적의 퍼짐 특성 (Spreading Characteristics of a Liquid Droplet Impacting Upon the Inclined Micro-textured Surfaces)

  • 신동환;문주현;이성혁
    • 한국분무공학회지
    • /
    • 제16권2호
    • /
    • pp.104-109
    • /
    • 2011
  • The present study investigated experimentally the spreading characteristics of a single liquid impinging on the inclined micro-textured aluminum (Al 6061) surfaces manufactured by using a micro computerized numerical control (${\mu}$-CNC) milling machine. The textured surfaces were composed of patterned micro-holes (diameter of $125\;{\mu}m$ and depth of $125\;{\mu}m$). In our experiment, the de-ionized (DI) water droplet of $4.3\;{\mu}l$ was impinged normally on the non-textured and textured surfaces at two different Weber numbers, and the droplet impinged on the inclined surfaces with different angles. A high speed camera was used to capture sequential digital images for measurement of the maximum spreading distance. It was found that for the textured surface, the measured apparent equilibrium contact angle (ECA) increased up to $105.8^{\circ}$, higher than the measured ECA of $87.6^{\circ}$ for the non-textured (bare) surface. In addition, it is conjectured that the spreading distance decreased because of a liquid penetration during droplet spreading through the holes, the increase in hydrophobicity, and viscous dissipation during impact process.

고체 표면에 충돌하는 뉴턴 액적에 대한 최대 액막 직경 모델 검토 (Assessment of Maximum Spreading Models for a Newtonian Droplet Impacting on a Solid Surface)

  • 안상모;이상용
    • 대한기계학회논문집B
    • /
    • 제36권6호
    • /
    • pp.633-638
    • /
    • 2012
  • 최대 액막 직경은 액적이 표면에 충돌한 이후에 최대로 퍼질 수 있는 정도를 의미하며, 분무기술과 관련된 다양한 응용분야에서 분무성능을 결정하는 중요한 인자 중의 하나이다. 본 연구에서는 고체표면에 충돌하는 뉴턴 액적에 대한 기존의 최대 액막 직경 모델들을 $4{\leq}Re{\leq}11700$, $23{\leq}We{\leq}786$, $37.9^{\circ}{\leq}{\theta}_s{\leq}107.1^{\circ}$ 범위에 해당하는 본 연구의 실험결과와 비교하여 검토하였다. 실험결과, 유체의 점도 및 충돌속도에 비하여 표면 젖음성이 최대 액막 직경에 미치는 영향은 미미한 것으로 나타났다. 한편, 기존의 모델 중에서 Roisman (2009) 모델은 최대 액막 직경에 대한 실험데이터의 80%를 ${\pm}5%$ 이내로 예측함으로써 가장 우수한 예측성능을 보였다.

점착 유층과 계면활성제 액적의 충돌에 의한 에멀젼 형성 (Generation of emulsions due to the impact of surfactant-laden droplet on a viscous oil layer on water)

  • 이동훈;김도형;김일두;이진기
    • 한국가시화정보학회지
    • /
    • 제20권3호
    • /
    • pp.10-18
    • /
    • 2022
  • We present an experimental investigation on emulsions created during the impact process between a surfactant-laden droplet and an oil layer on water. By varying the surfactant concentration and the viscosity of oil layer, we created emulsions and visualized them using multi-dimensional high-speed imaging. Our analysis shows that the emulsions are more likely to be unstable and decay within a minute if the impacting droplet contains more surfactant. We also found that there are three mechanisms of generation of emulsions depending on the concentration of surfactant and the viscosity of oil layer; the jet pinch-off, cavity pinch-off, and tearing of oil layer. Jet and cavity pinch-off turned out to be dominant mechanisms for high oil viscosities, while tearing of oil layer is dominant for low oil viscosities. Our result is potentially useful in designing optimal dispersant properties for offshore oil contamination.