• Title/Summary/Keyword: Impact-Echo Non-Destructive Evaluation

Search Result 10, Processing Time 0.027 seconds

Experimental Investigation of Impact-Echo Method for Concrete Slab Thickness Measurement

  • Popovics John S.;Cetrangolo Gonzalo P.;Jackson Nicole D.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.26 no.6
    • /
    • pp.427-439
    • /
    • 2006
  • Accurate estimates of in place thickness of early age (3 to 28 days after casting) concrete pavements are needed, where a thickness accuracy of ${\pm}6mm$ is desired. The impact-echo method is a standardized non-destructive technique that has been applied for this task. However, the ability of impact-echo to achieve this precision goal is affected by Vp (measured) and ${\beta}$ (assumed) values that are applied in the computation. A deeper understanding of the effects of these parameters on the accuracy of impact-echo should allow the technique to be improved to meet the desired accuracy goal. In this paper, the results of experimental tests carried out on a range of concrete slabs are reported. Impact-echo thickness estimation errors caused by material property gradients and sensor type are identified. Correction factors to the standard analysis method are proposed to correct the identified errors and to increase the accuracy of the standard method. Results show that improved accuracy can be obtained in the field by applying these recommendations with the standard impact-echo method.

Nondestructive Evaluation of Concrete Members using Impact Echo and SASW Methods (충격반향기법과 표면파기법을 이용한 콘크리트 부재의 비파괴 검사)

  • 김동수;박형춘;이광명
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1995.10a
    • /
    • pp.164-168
    • /
    • 1995
  • As nation's infrastructure is getting old, nondestructive evaluation of existing structures and construction quality control are getting important. In this paper non-destructive evaluations of concrete members using impact echo and SASW methods are introduced. Both techniques are based on the stress wave propagations. Experimental tests were performed using beam type concrete member where voids and cracks are included. Within reasonable accuracy, void locations were detected using impact echo method and the dynamic modulus of concrete were measured using SASW method. Both NDT methods showed a feasibility for the implementation into quality evaluaton of concrete members in practice

  • PDF

A Study on Applicability of Numerical Analyses for Stress Wave-Based NDE Techniques (응력파를 이용한 비파괴 탐상기법의 수치해석 적용성에 관한 연구)

  • 이영준;이종세
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2003.04a
    • /
    • pp.504-512
    • /
    • 2003
  • Simulation programs have been developed and used as an attempt to improve the accuracy of Non-Destructive Evaluation(NDE) techniques. The applicability of these programs is very limited, however, because it is difficult to describe the delicacy of the propagation of stress waves. To investigate the applicability of the finite element analysis for stress wave-based NDE techniques numerical simulation for Impact-Echo method and SASW method is performed. The numerical studies are performed to determine the essential parameters such as contact time of impact load, mesh size and time step size. These studies show that the choice of parameter is very important for improving the accuracy and confidence of the numerical procedure and, thereby, the applicability of the numerical analysis for stress wave-based NDE techniques

  • PDF

Accuracy Enhancement of Reflection Signals in Impact Echo Test

  • Lho, Byeong-Cheol
    • Journal of the Korea Concrete Institute
    • /
    • v.15 no.6
    • /
    • pp.924-929
    • /
    • 2003
  • A majority of infrastructures has been deteriorated over time. Therefore, it is very important to verify the quality of construction, and the level of structural deterioration in existing structures, to ensure their safety and functionality. Many researchers have studied non-destructive testing (NDT) methods to identify structural problems in existing structures. The impact echo technique is one of the widely used NDT techniques. The impact echo technique has several inherent problems, including the difficulties in P-wave velocity evaluation due to inhomogeneous concrete properties, deterioration of evaluation accuracy where multiple reflection boundaries exist, and the influence of the receiver location in evaluating the thickness of the tested structures. Therefore, the objective of this paper is to propose an enhanced impact echo technique that can reduce the aforementioned problems and develop a Virtual Instrument for the application via a thickness evaluation technique which has same technical background to find deterioration in concrete structures. In the proposed impact echo technique, transfer function from dual channel system analysis is used, and coherence is improved to achieve reliable data. Also an averaged signal -ensemble- is used to achieve more reliable results. From the analysis of transfer function, the thickness is effectively identified.

Integrity Evaluation of Deep Foundations by Using Impact Echo Method(Numerical Study) (충격반향기법을 이용한 깊은 기초의 건전도 평가(수치해석))

  • 김동수;박연홍
    • Journal of the Korean Geotechnical Society
    • /
    • v.15 no.2
    • /
    • pp.139-152
    • /
    • 1999
  • These days we broadly apply drilled shafts for deep foundations to build infrastructures. The defects of the deep foundations cause the decrease of their support load capacity and the increase of settlement, and the subsequent damage of the super-structures. In consequence, non-destructive testings techniques of concrete piles are important for their integrity evaluation. To improve understanding and reliable application of the impact echo method for the integrity evaluation of the drilled concrete piles, numerical studies of the impact response of concrete piles by using axi-symmetric three-dimensional finite element method are peformed for (a) sound piles: (b) piles containing necks, voids and layers of low-quality concrete: and (c) piles in soil and/or above rock. The results of these studies show that the finite element method is effective for evaluating the impact response of drilled concrete piles.

  • PDF

Development of A Strength Test Method for Irregular Shaped Concrete Block Paver (이형 콘크리트 블록의 강도 평가방법에 관한 연구)

  • Lin, Wuguang;Park, Dae-Geun;Ryu, SungWoo;Cho, Yoon-Ho
    • International Journal of Highway Engineering
    • /
    • v.16 no.2
    • /
    • pp.11-18
    • /
    • 2014
  • PURPOSES : This study aims to develop a strength test method for irregularly shaped concrete block paver. METHODS : Ten (10) different types of concrete block pavers including porous and dense blocks were tested for strength capacities. Destructive and non-destructive methods were used to develop a strength test method for irregularly shaped concrete block paver. The flexural strength evaluation was conducted in accordance to KS F 4419, while compressive strength was conducted with a 45.7mm-diameter core specimen. The impact echo test method was used to evaluate the elastic modulus. Finally, regression analysis was used to investigate the relationship between flexural strength, compressive strength and elastic modulus based on their corresponding test results. RESULTS : The flexural strength of the tested block pavers ranged from 4MPa to 10MPa. At 95% confidence level, the coefficients of determination between compressive-flexural strength relationship and compressive strength-elastic modulus relationship were 0.94 and 0.84, respectively. These coefficients signified high correlation. CONCLUSIONS : Using the test method proposed in this study, it will be easier to evaluate the strength of irregularly shaped concrete block pavers through impact echo test and compressive test, instead of the flexural test. Relative to the flexural strength requirement of 5MPa, the minimum values of compressive strength and elastic modulus, as proposed, are 13.0MPa and 25.0GPa, respectively.

Development of Inspection and Diagnosis System for Safety and Maintenance in Tunnel (터널 유지관리를 위한 안전진단시스템 개발에 관한 연구)

  • Kim, Young-Geun;Baek, Ki-Hyun
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.3 no.1
    • /
    • pp.37-50
    • /
    • 2001
  • Recently, as tunnel structure is getting old, many deformations and defects have been occurred. As tunnel has the characteristics of underground structure, the estimation of the cause of deformation is very difficult. Then, it is necessary to investigate the state of tunnel lining and to estimate the deformation cause and safety for tunnel. In this study, inspection and diagnosis system for effective maintenance in tunnel was researched. Firstly, non-destructive techniques such as GPR (ground penetrating radar), impact echo test, and infrared thermal techniques were applied to tunnel lining inspection. Tunnel lining analysis system was developed to analyze the stability of tunnel. And, tunnel soundness evaluation system was developed to find the probable causes and indicate the method for repair and reinforcement for tunnel.

  • PDF

Progressive Evaluation of Concrete Deterioration Caused by Chloride-Induced Steel Corrosion Using Impact-Echo Testing (충격 반향 신호 모니터링을 통한 철근 부식 진전에 따른 콘크리트 상태 평가)

  • Rizky Pitajeng;Julfikhsan Ahmad Mukhti;Seong-Hoon Kee
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.28 no.3
    • /
    • pp.37-46
    • /
    • 2024
  • This study investigates the evolution of concrete damage due to chloride-induced steel corrosion through Impact-echo (IE) testing. Three reinforced concrete specimens, each measuring 1500 mm in length, 400 mm in width, and 200 mm in thickness, were fabricated using three concrete mixture proportions of blended cement types: ordinary Portland cement, ground granulated blast-furnace slag and fly ash. Steel corrosion in the concrete was accelerated by impressing a 0.5 A current following a 35-day cycle of wet-and-dry saturation in a 3% NaCl solution. Initial IE data collected during the saturation phase showed no significant changes, indicating that moisture had a minimal impact on IE signals and highlighting the slow progress of corrosion under natural conditions. Post-application of current, however, there was a noticeable decline in both IE peak frequency and the P-wave velocity in the concrete as the duration of the impressed current increased. Remarkably, progressive monitoring of IE proves highly effective in capturing the critical features of steel-corrosion induced concrete deterioration, such as the onset of internal damages and the rate of damage propagation. These results demonstrate the potential of progressive IE data monitoring to enhance the reliability of diagnosing and prognosticating the evolution of concrete damage in marine environment.

Evaluation of bonding state of shotcrete lining using nondestructive testing methods - experimental analysis (비파괴 시험 기법을 이용한 숏크리트 배면 접착상태 평가에 관한 실험적 연구)

  • Song, Ki-Il;Cho, Gye-Chun;Chang, Seok-Bue;Hong, Eun-Soo
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.11 no.1
    • /
    • pp.71-83
    • /
    • 2009
  • Shotcrete is an important primary support for tunnelling in rock. The quality control of shotcrete is a core issue in the safe construction and maintenance of tunnels. Although shotcrete may be applied well initially onto excavated rock surfaces, it is affected by blasting, rock deformation and shrinkage and can debond from the excavated surface, causing problems such as corrosion, buckling, fracturing and the creation of internal voids. This study suggests an effective non-destructive evaluation method of the tunnel shotcrete bonding state applied onto hard rocks using the impact-echo (IE) method and ground penetration radar (GPR). To verify previous numerical simulation results, experimental study carried out. Generally, the bonding state of shotcrete can be classified into void, debonded, and fully bonded. In the laboratory, three different bonding conditions were modeled. The signals obtained from the experimental IE tests were analyzed at the time domain, frequency domain, and time-frequency domain (i.e., the Short- Time Fourier transform). For all cases in the analyses, the experimental test results were in good agreement with the previous numerical simulation results, verifying this approach. Both the numerical and experimental results suggest that the bonding state of shotcrete can be evaluated through changes in the resonance frequency and geometric damping ratio in a frequency domain analysis, and through changes in the contour shape and correlation coefficient in a time-frequency analysis: as the bonding state worsens in hard rock condition, the autospectral density increases, the geometric damping ratio decreases, and the contour shape in the time-frequency domain has a long tail parallel to the time axis. The correlation coefficient can be effectively applied for a quantitative evaluation of bonding state of tunnel shotcrete. Finally, the bonding state of shotcrete can be successfully evaluated based on the process suggested in this study.