• Title/Summary/Keyword: Impact strain

Search Result 670, Processing Time 0.028 seconds

Parameter Study for the Analysis of Impact Characteristics considering Dynamic Material Properties (동적 물성치를 고려한 V.I. 충격인자의 영향 분석)

  • Lim, J.H.;Song, J.H.;Huh, H.;Park, W.J.;Oh, I.S.;Choe, J.W.
    • Proceedings of the KSME Conference
    • /
    • 2001.06a
    • /
    • pp.945-950
    • /
    • 2001
  • Vacuum interrupters that is used in various switchgear components such as circuit breakers, distribution switches, contactors, etc. spreads the arc uniformly over the surface of the contacts. The electrode of vacuum interrupters is used sintered Cu-Cr material satisfied with good electrical and mechanical characteristics. Because the closing velocity is 1-3m/s, the deformation of the material of electrodes depends on the strain rate and the dynamic behavior of the sintered Cu-Cr material is a key to investigate the impact characteristics of the electrodes. The dynamic response of the material at the high strain-rate is obtained from the split Hopkinson pressure bar test using cylinder type specimens. Experimental results from both quasi-static and dynamic compressive tests with the split Hopkinson pressure bar apparatus are interpolated to construct the Johnson-Cook equation as the constitutive relation that should be applied to simulation of the dynamic behavior of electrodes. To evaluate impact characteristic of a vacuum interrupter, simulation is carried out with five parameters such as initial velocity, added mass of a movable electrode, wipe spring constant, initial offset of a wipe spring and virtual fixed spring constant.

  • PDF

A Study on the Threshing Mechanism of Rasp-Bar Type Thresher -Dynamic Analysis of Threshing Process- (줄봉형 탈곡기의 탈곡장치에 관한 연구 -탈곡과정의 역학적 분석-)

  • Park, K.J.;Clark, S.J.;Dwyer, S.V.
    • Journal of Biosystems Engineering
    • /
    • v.18 no.4
    • /
    • pp.371-381
    • /
    • 1993
  • Threshing operation is performed by impact, compression and friction forces inside the thresher. These values should be appropriate to the crop condition to enhance the threshing and separating efficiency and to decrease the grain damage. To analyze the threshing process inside the rasp-bar type thresher, impact, friction and compression forces were measured using transducers with strain gage circuits. To measure the impact forces and friction forces between the rasp-bar and crop, full bridge strain gage circuit was built on the rasp-bar holder. To measure the compression forces and circumferential friction forces between the concave and crop, two sets of full bridge strain gage circuits were built on the T-type concave transducer. Threshing work of wheat crop with 12% of moisture content was performed at 3 levels of compression ratio and with 3 replications. Each transducer could not measure the exact forces continuously because the transducer oscillates with the forces. However they could measure maximum forces and force distribution according to the time. Average friction coefficients between crop and concave was 0.61 not showing any significant difference according to the compression ratio. Average acceleration of the crop in the cylinder appeared from $70.6m/s^2$ to $140.8m/s^2$ according to the compression ratio. The velocity of the crop at the exit of the cylinder appeared from 10.7m/s to 15.0m/s according to the compression ratio.

  • PDF

Effect of Intercritical Annealing on the Dynamic Strain Aging(DSA) and Toughness of SA106 Gr.C Piping Steel

  • Lee, Joo-Suk;Kim, In-Sup;Park, Chi-Yong;Kim, Jin-Weon
    • Nuclear Engineering and Technology
    • /
    • v.32 no.1
    • /
    • pp.77-87
    • /
    • 2000
  • It is reported that the toughness and safety margins of the SA106 Gr.C main steam line piping steel is reduced due to dynamic strain aging (DSA) at the reactor operating temperature for Leak-Before-Break (LBB) application. In this study, intercritical annealing in two-phase ($\alpha$+${\gamma}$)region was performed to investigate the possibility of improving the toughness and reducing DSA susceptibility. The manifestations of DSA were still observed in the tensile tests of the annealed specimens. However, the ductility loss caused by DSA was smaller than that in the as-received material. Furthermore, the intercritical annealing was able to increase the Charpy impact toughness by 1.5 times compared to as-received. With the heat treatment, we could obtain microstructural changes such as the cleaner retained ferrite, increased ferrite content and somewhat finer grain size. It is considered that the reduced DSA was induced by cleaner retained ferrite, which in turn resulted in higher impact toughness in addition to the general toughening due to finer grain sizes and increased ferrite content.

  • PDF

Fracture Estimation of Stiffened Plates under Impact Loading using Micromechanics Plasticity Model (미시역학 소성모델을 이용한 충격하중을 받는 보강판의 파단 예측)

  • Choung, Joon-Mo;Cho, Sang-Rai;Kim, Kyung-Su
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.46 no.6
    • /
    • pp.611-621
    • /
    • 2009
  • This paper first reviews the physical meanings and the expressions of two representative strain rate models: CSM (Cowper-Symonds Model) and JCM (Johnson-Cook Model). Since it is known that the CSM and the JCM are suitable for low-intermediate and intermediate-high rate ranges, many studies regarding marine accidents such as ship collision/grounding and explosion in FPSO have employed the CSM. A formula to predict the material constant of the CSM is introduced from literature survey. Numerical simulations with two different material constitutive equations, classical metal plasticity model based on von Mises yield function and micromechanical porous plasticity model based on Gurson yield function, have been carried out for the stiffened plates under impact loading. Simulation results coincide with experimental results better when using the porous plasticity model.

Investigation on vibration behavior of a high-speed railway bridge based on monitoring data

  • Qingxin Zhu;Hao Wang;Billie F. Spencer Jr
    • Smart Structures and Systems
    • /
    • v.31 no.6
    • /
    • pp.585-599
    • /
    • 2023
  • Field monitoring techniques offer an attractive approach for understanding bridge behavior under in-service loads. However, the investigations on bridge behavior under high-speed train load using field monitoring data are limited. The focus of this study is to explore the structural behavior of an in-service long-span steel truss arch bridge based on field monitoring data. First, the natural frequencies of the structure, as well as the train driving frequencies, are extracted. Then, the train-induced bearing displacement and structural strain are explored to identify the effects of train loads and bearings. Subsequently, a sensitivity analysis is performed for the impact factor of strain responses with respect to the train speed, train weight, and temperature to identify the fundamental issues affecting these responses. Additionally, a similar sensitivity analysis is conducted for the peak acceleration. The results indicate that the friction force in bearings provides residual deformations when two consecutive trains are in opposite directions. In addition, the impact factor and peak acceleration are primarily affected by train speed, particularly near train speeds that result in the resonance of the bridge response. The results can provide additional insight into the behavior of the long-span steel truss bridges under in-service high-speed train loads.

Tensile strength of unidirectional CFRP laminate under high strain rate

  • Taniguchi, Norihiko;Nishiwaki, Tsuyoshi;Kawada, Hiroyuki
    • Advanced Composite Materials
    • /
    • v.16 no.2
    • /
    • pp.167-180
    • /
    • 2007
  • The tensile strength of unidirectional carbon fiber reinforced plastics under a high strain rate was experimentally investigated. A high-strain-rate test was performed using the tension-type split Hopkinson bar technique. In order to obtain the tensile stress-strain relations, a special fixture was used for the impact tensile specimen. The experimental results demonstrated that the tensile modulus and strength in the longitudinal direction are independent of the strain rate. In contrast, the tensile properties in the transverse direction and the shear properties increase with the strain rate. Moreover, it was observed that the strain-rate dependence of the shear strength is much stronger than that of the transverse strength. The tensile strength of off-axis specimens was measured using an oblique tab, and the experimental results were compared with the tensile strength predicted based on the Tsai-Hill failure criterion. It was concluded that the tensile strength can be characterized quite well using the above failure criterion under dynamic loading conditions.

Numerical Simulation of High-Velocity Oblique Impact of Mild Steel Spheres Against Mild Steel Plates (연강 판재에 대한 연강 구의 고속경사충돌 수치해석)

  • Yu, Yo-Han;Jang, Sun-Nam;Jeong, Dong-Taek
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.3
    • /
    • pp.576-585
    • /
    • 2002
  • A three-dimensional Lagrangian explicit time-integration finite element code for analyzing the dynamic impact phenomena was developed. It uses four node tetrahedral elements. In order to consider the effects of strain rate hardening, strain hardening and thermal softening, which are frequently observed in high-velocity deformation phenomena, Johnson-Cook model is used as constitutive model. For more accurate and robust contact force computation, the defense node contact algorithm was adopted and implemented. In order to evaluate the performance of the newly developed three-dimensional hydrocode NET3D, numerical simulations of the oblique impact of mild steel plate by mild steel sphere were carried out. Ballistic limit about various oblique angle between 0 degree and 80 degree was estimated through a series of simulations with different initial velocities of sphere. Element eroding by equivalent plastic strain was applied to mild steel spheres and targets. Ballistic limits and fracture characteristics obtained from simulation were compared with experimental results conducted by Finnegan et al. From numerical studies, the following conclusions were reached. (1) Simulations could successfully reproduce the key features observed in experiment such as tensile failure termed "disking"at normal impacts and outwards bending of partially formed plus segments termed "hinge-mode"at oblique impacts. (2) Simulation results fur 60 degrees oblique impact at 0.70 km/s and 0.91 km/s were compared with experimental results and Eulerian hydrocode CTH simulation results. The Lagrangian code NET3D is superior to Eulerian code CTH in the computational accuracy. Agreement with the experimentally obtained final deformed cross-sections of the projectile is excellent. (3) Agreement with the experimental ballistic limit data, particularly at the high-obliquity impacts, is reasonably good. (4) The simulation result is not very sensitive to eroding condition but slightly influenced by friction coefficient.

Determination of Dynamic Yield Stress of Copper Alloys Using Rod Impact Test (봉충격시험에 의한 동합금의 동적 항복응력 결정)

  • 이정민;민옥기
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.4
    • /
    • pp.1041-1050
    • /
    • 1995
  • The deformed shape of rod specimen of copper alloys was measured after the high-velocity impact against a rigid anvil and analyzed with one-dimensional theory to determine dynamic yield stress and strain-rate sensitivity which is defined as the ratio of dynamic yield stress to static flow stress. The evvect of two-dimensional deformation on the determination of dynamic yield stress by the one-dimensional theory, was investigated through comparison with the analysis by hydrocode. It showed that the one-dimensional theory is relatively consistent with two-dimensional hydrocode in spite of its simplicity in analysis.

Analysis of RC beams subjected to shock loading using a modified fibre element formulation

  • Valipour, Hamid R.;Huynh, Luan;Foster, Stephen J.
    • Computers and Concrete
    • /
    • v.6 no.5
    • /
    • pp.377-390
    • /
    • 2009
  • In this paper an improved one-dimensional frame element for modelling of reinforced concrete beams and columns subjected to impact is presented. The model is developed in the framework of a flexibility fibre element formulation that ignores the shear effect at material level. However, a simple shear cap is introduced at section level to take account of possible shear failure. The effect of strain rate at the fibre level is taken into account by using the dynamic increase factor (DIF) concept for steel and concrete. The capability of the formulation for estimating the element response history is demonstrated by some numerical examples and it is shown that the developed 1D element has the potential to be used for dynamic analysis of large framed structures subjected to impact of air blast and rigid objects.

Experimental Study on Wedge Slamming Considering Fluid-Structure Interaction (유체-구조 상호 간섭을 고려한 쐐기 슬래밍에 대한 실험적 연구)

  • Ahn, Kang-Su;Kwon, Sun-Hong
    • Journal of Ocean Engineering and Technology
    • /
    • v.31 no.1
    • /
    • pp.22-27
    • /
    • 2017
  • This paper presents the results of an experimental study on the wedge slamming impact problem, including the fluid-structure interaction. A free drop test was performed to estimate the hydroelasticity. Three wedges were fabricated of 5 mm thick steel plate. The deadrise angles were $15^{\circ}$, $20^{\circ}$, and $25^{\circ}$. Plate thicknesses of 2 mm and 3 mm were used to determine the effect of the structural rigidity. The drop heights were 25 cm, 50 cm, 75 cm, and 100 cm. The pressure on a rigid part of the wedge and strain of the elastic plate were measured at four different locations. The pressure was compared using the Wagner theory and generalized Wagner theory.