• Title/Summary/Keyword: Impact strain

Search Result 679, Processing Time 0.022 seconds

Detection of RNA Mycoviruses in Wild Strains of Lentinula edodes in Korea

  • Kim, Eunjin;Park, Mi-Jeong;Jang, Yeongseon;Ryoo, Rhim;Ka, Kang-Hyeon
    • The Korean Journal of Mycology
    • /
    • v.49 no.3
    • /
    • pp.285-294
    • /
    • 2021
  • In general, mycoviruses remain latent and rarely cause visible symptoms in fungal hosts; however, some viral infections have demonstrated abnormal mycelial growth and fruiting body development in commercial macrofungi, including Lentinula edodes. Compared to other cultivated mushrooms, L. edodes is more vulnerable to viral infections as it is still widely cultivated under near-natural conditions. In this study, we investigated whether Korean wild strains of L. edodes were infected by RNA mycoviruses that have previously been reported in other parts of the world (LeSV, LePV1, LeV-HKB, LeNSRV1, and LeNSRV2). Using specific primer sets that target the RNA-dependent RNA polymerase genes of each of the RNA mycovirus, reverse transcription-polymerase chain reaction (RT-PCR) was used to detect viral infection. Viral infection was detected in about 90% of the 112 wild strains that were collected in Korea between 1983 and 2020. Moreover, multiple infections with RNA mycoviruses were detected in strains that had normal fruiting bodies. This work contributes to our understanding of the distribution of RNA mycoviruses in Korea and the impact of multiple viral infections in a single strain of L. edodes.

Life Prediction and Stress Evaluation of Hydraulic Winch Drum by Finite Element Analysis and Experiment (유한요소해석과 실험에 의한 유압 윈치 드럼의 응력 계산 및 수명 예측)

  • Lee, Gi-Chun;Park, Jane;Nam, Tae-Yeon;Choi, Jong-Sik;Park, Jong-Won;Lee, Yong-Bum;Je, Yeong-Gi;Lee, Jae-Hwan
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.57 no.5
    • /
    • pp.254-261
    • /
    • 2020
  • The structural safety of hydraulic winch drum and the gears are estimated by the Finite Element Analysis (FEA) and the winch operation experiment. The mesh convergence test is performed and the applied force is the pressure on the drum converted from the rope tension in working condition. The stress of the drum calculated from the strain values of the winch operation experiment shows the agreement with that from the FEA. Most stress values are under the yield strength except for the small hole made for the wire rope fixation. The life of bearings in the drum is calculated using the life prediction formula with the reaction forces from the operation load. One of the two ball bearings shows the short life for impact condition, yet the real prototype winch system shows more life than the numerical value.

Structural damage detection in presence of temperature variability using 2D CNN integrated with EMD

  • Sharma, Smriti;Sen, Subhamoy
    • Structural Monitoring and Maintenance
    • /
    • v.8 no.4
    • /
    • pp.379-402
    • /
    • 2021
  • Traditional approaches for structural health monitoring (SHM) seldom take ambient uncertainty (temperature, humidity, ambient vibration) into consideration, while their impacts on structural responses are substantial, leading to a possibility of raising false alarms. A few predictors model-based approaches deal with these uncertainties through complex numerical models running online, rendering the SHM approach to be compute-intensive, slow, and sometimes not practical. Also, with model-based approaches, the imperative need for a precise understanding of the structure often poses a problem for not so well understood complex systems. The present study employs a data-based approach coupled with Empirical mode decomposition (EMD) to correlate recorded response time histories under varying temperature conditions to corresponding damage scenarios. EMD decomposes the response signal into a finite set of intrinsic mode functions (IMFs). A two-dimensional Convolutional Neural Network (2DCNN) is further trained to associate these IMFs to the respective damage cases. The use of IMFs in place of raw signals helps to reduce the impact of sensor noise while preserving the essential spatio-temporal information less-sensitive to thermal effects and thereby stands as a better damage-sensitive feature than the raw signal itself. The proposed algorithm is numerically tested on a single span bridge under varying temperature conditions for different damage severities. The dynamic strain is recorded as the response since they are frame-invariant and cheaper to install. The proposed algorithm has been observed to be damage sensitive as well as sufficiently robust against measurement noise.

The Effect of COVID-19 Pandemic on Financial Performance of Firms: Empirical Evidence from Vietnamese Logistics Enterprises

  • NGUYEN, Hong Thi Xuan
    • The Journal of Asian Finance, Economics and Business
    • /
    • v.9 no.2
    • /
    • pp.177-183
    • /
    • 2022
  • The COVID-19 pandemic has hurt the economy and negatively impacted all enterprises' financial performance. The COVID-19 pandemic has put a strain on global manufacturing capacity and supply chains, and it is also the pandemic that has given up new opportunities for the logistics industry to develop as e-commerce has developed. By analyzing the financial performance of logistic firms listed on the Vietnam Stock Exchange, this study tries to quantify those consequences. A total of 114 logistic companies were included in the study's sample. The Wilcoxon Signed Rank Test was performed to test the difference between some ratios in 2019 and 2020. This study found that the financial performance of 114 logistic firms listed on the Vietnam stock exchange has not improved. The data show that during the COVID-19 pandemic, the leverage ratio increased while the profitability and efficiency ratios decreased. The liquidity ratio did not show any significant differences. On the contrary, these businesses' performance, such as returns on assets, receivable turnover, and leverage, has decreased. The COVID-19 had a global impact on supply chains, therefore export activity and international transportation were badly hampered, with only a few domestic logistic enterprises growing.

Failure pattern of twin strip footings on geo-reinforced sand: Experimental and numerical study

  • Mahmoud Ghazavi;Marzieh Norouzi;Pezhman Fazeli Dehkordi
    • Geomechanics and Engineering
    • /
    • v.32 no.6
    • /
    • pp.653-671
    • /
    • 2023
  • In practice, the interference influence caused by adjacent footings of structures on geo-reinforced loose soil has a considerable impact on their behavior. Thus, the goal of this study is to evaluate the behavior of two strip footings in close proximity on both geocell and geogrid reinforced soil with different reinforcement layers. Geocell was made from geogrid material used to compare the performance of cellular and planar reinforcement on the bearing pressure of twin footings. Extensive experimental tests have been performed to attain the optimum embedment depth and vertical distance between reinforcement layers. Particle image velocimetry (PIV) analysis has been conducted to monitor the deformation, tilting and movement of soil particles beneath and between twin footings. Results of tests and PIV technique were verified using finite element modeling (FEM) and the results of both PIV and FEM were used to utilize failure mechanisms and influenced shear strain around the loading region. The results show that the performance of twin footings on geocell-reinforced sand at allowable and ultimate settlement ranges are almost 4% and 25% greater than the same twin footings on the same geogrid-reinforced sand, respectively. By increasing the distance between twin footings, soil particle displacements become smaller than the settlement of the foundations.

Waves dispersion in an imperfect functionally graded beam resting on visco-Pasternak foundation

  • Saeed I. Tahir;Abdelbaki Chikh;Ismail M. Mudhaffar;Abdelouahed Tounsi;Mohammed A. Al-Osta
    • Geomechanics and Engineering
    • /
    • v.33 no.3
    • /
    • pp.271-277
    • /
    • 2023
  • This article investigates the effect of viscoelastic foundations on the waves' dispersion in a beam made of ceramic-metal functionally graded material (FGM) with microstructural defects. The beam is considered to be shear deformable, and a simple three-unknown sinusoidal integral higher-order shear deformation beam theory is applied to represent the beam's displacement field. Novel to this study is the investigation of the impact of viscosity damping on imperfect FG beams, utilizing a few-unknowns theory. The stresses and strains are obtained using the two-dimensional elasticity relations of FGM, neglecting the normal strain in the beam's depth direction. The variational operation is employed to define the dispersion relations of the FGM beam. The influences of the material gradation exponent, the beam's thickness, the porosity, and visco-Pasternak foundation parameters are represented. Results showed that phase velocity was inversely proportional to the damping and porosity of the beams. Additionally, the foundation viscous damping had a stronger influence on wave velocity when porosity volume fractions were low.

On the wave propagations of football game ball after contacting with the player foot

  • Lei Sun;Cancan Wei;Fei Liu;Lijun Wang;Bo Ren
    • Geomechanics and Engineering
    • /
    • v.33 no.6
    • /
    • pp.529-542
    • /
    • 2023
  • Wave propagation with high transverse deflection could affect the stability of the ball in its trajectory. For low stiffness balls similar to soccer and volleyball balls, the waves are more noticeable in comparison to other balls like ping-pong ball. On the other hand, the soccer balls are under heavy impact loads from shoots and contacting different objects in the field. The maximum recorded speed of a soccer ball after kicking is the 211 km/hr and the average maximum speed is around 112 km/hr. Therefore, in such speeds the aerodynamic forces become important which are directly related to geometrical shape of the ball. In this regard, the wave propagation in soccer ball is examined in the current study using large deformation shear deformable formulations. Classical relations of stress-strain components are taken into consideration along with minimum total energy principle. The final derived relations were solved by using harmonic differential quadrature method. The results are generally presented ion term of phase velocity as function of different influencing parameters of the materials, geometry and mass of the ball.

Studies on seismic performance of the new section steel beam-wall connection joint

  • Weicheng Su;Jian Liu;Changjiang Liu;Chiyu Luo;Weihua Ye;Yaojun Deng
    • Structural Engineering and Mechanics
    • /
    • v.88 no.5
    • /
    • pp.501-519
    • /
    • 2023
  • This paper introduces a new hybrid structural connection joint that combines shear walls with section steel beams, fundamentally resolving the construction complexity issue of requiring pre-embedded connectors in the connection between shear walls and steel beams. Initially, a quasi-static loading scheme with load-deformation dual control was employed to conduct low-cycle repeated loading experiments on five new connection joints. Data was acquired using displacement and strain gauges to compare the energy dissipation coefficients of each specimen. The destruction process of the new connection joints was meticulously observed and recorded, delineating it into three stages. Hysteresis curves and skeleton curves of the joint specimens were plotted based on experimental results, summarizing the energy dissipation performance of the joints. It's noteworthy that the addition of shear walls led to an approximate 17% increase in the energy dissipation coefficient. The energy dissipation coefficients of dog-bone-shaped connection joints with shear walls and cover plates reached 2.043 and 2.059, respectively, exhibiting the most comprehensive hysteresis curves. Additionally, the impact of laminated steel plates covering composite concrete floors on the stiffness of semi-rigid joint ends under excessive stretching should not be disregarded. A comparison with finite element analysis results yielded an error of merely 2.2%, offering substantial evidence for the wide-ranging application prospects of this innovative joint in seismic performance.

Bending and stability information of cylindrical structures in the application of sports equipment

  • Xiaoyuan Liu;Radzliyana Radzuwan;Nadiah Diyana Tan Binti Abdullah
    • Advances in concrete construction
    • /
    • v.16 no.4
    • /
    • pp.189-203
    • /
    • 2023
  • This study investigates the bending and stability properties of cylindrical constructions, with a focus on their use in the design and implementation of sporting equipment. The work focuses on a cylindrical construction resembling nanomotors, similar to components seen in sports equipment, using mathematical modeling based on high-order beam theory and nonlocal strain gradient theory. The analysis provides important insights into the dynamic behavior of these systems, revealing light on the impact of numerous factors such as rotational velocity, section change rate, and structural dimensions. The results show a relationship between angular velocity growth and section change rate, which leads to an increase in fundamental frequency values. Furthermore, the research emphasizes the effect of structural factors on dynamic deflection, giving critical information for increasing the stability and performance of sporting equipment. This study adds to the area of sports engineering by providing a more nuanced understanding of how cylindrical constructions react under diverse settings. The results will help to guide the design and manufacturing processes of sports equipment, assuring improved stability and performance for players across a wide range of sports.

The Impact of Water Depth and Speed on Lower Muscles Activation During Exercise in Different Aquatic Environments

  • Gyu-sun, Moon
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.16 no.2
    • /
    • pp.169-178
    • /
    • 2024
  • This study aimed to investigate the effects of water depth and speed on the activation of lower muscles during squat exercises, utilizing electromyography(EMG). It involved ten male participants in there. Participants performed 30 squats over a minute at a speed of 60bpm and maximum speed squats until exhaustion within a minute. The Integrated electromyography(iEMG) readings for the rectus femoris showed statistically significant differences due to water depth and speed, with a significant interaction effect between depth and speed during squat exercises. The iEMG readings for the biceps femoris also showed statistically significant differences, with a significant interaction effect between depth and speed during squat exercises. The iEMG readings for the gastrocnemius showed statistically significant differences according to water depth and speed. However, the interaction effect of water depth and speed during squat exercises did not show a statistically significant difference. In contrast, the iEMG readings for the tibialis anterior demonstrated statistically significant differences, with a statistically significant interaction effect during squats. These findings suggest that water depth and speed positively influence the activation patterns of lower muscles. Therefore, appropriately tailored aquatic exercises based on water depth for individuals with musculoskeletal discomfort, including the elderly or those with physical impairments, can effectively reduce physical strain and enhance balance, as well as physical and perceptual aspects. It is concluded that such exercises could provide a safer and more effective method of exercise compared to ground-based alternatives.