• 제목/요약/키워드: Impact refining

검색결과 27건 처리시간 0.023초

Effect of Mechanical Impact Treatment on Fiber Morphology and Handsheet Properties

  • Yung B. Seo;Kim, Dukki;Lee, Jong-Hoon;Yang Jeon
    • 한국펄프종이공학회:학술대회논문집
    • /
    • 한국펄프종이공학회 2001년도 추계학술발표논문집
    • /
    • pp.183-199
    • /
    • 2001
  • Alternative way of shaping fibers suitable for papermaking was introduced. Impact refining, which was done simply by hitting wet fibers with a metal weight vertically, was intended to keep the fibers from shortening and to cause mostly internal fibrillation. Virgin chemical pulp, its recycled one and OCC were used in the experiment. It was noticed from the experiment that impact refining on virgin chemical pulp kept the fiber length and Increased bonding properties greatly, However, in the recycled fibers from the chemical pulp, fiber length and bonding properties were decreased. In OCC, which seems to contain fractions of semi-chemical pulp and mechanical pulp (GP), and which is recycled pulp from corrugated boxes, fiber length and bonding properties were decreased disastrously. We believe recycled cellulosic fibers (recycled chemical pulp and OCC in this case), which went through hornification, were less resistant to the mechanical impact than virgin chemical pulp. For virgin chemical pulp, impact refining allowed no significant fiber length shortening, high WRV, and high mechanical strength.

  • PDF

Mechanical Impact Treatment on Pulp fibers and Their Handsheet Properties

  • Yung B. Seo;Kim, Dukki;Lee, Jong-Hoon;Yang Jeon
    • 펄프종이기술
    • /
    • 제34권5호
    • /
    • pp.56-62
    • /
    • 2002
  • Alternative way of shaping fibers suitable for papermaking was introduced. Impact refining, which was done simply by hitting wet fibers with a metal weight vertically, was intended to keep the fibers from shortening and to cause mostly internal fibrillation. Virgin chemical pulp, its recycled one and OCC were used in the experiment. It was noticed from the experiment that impact refining on virgin chemical pulp kept the fiber length and increased bonding properties greatly. However, in the recycled fibers from the chemical pulp, fiber length and bonding properties were decreased. In OCC, which seems to contain fractions of semi-chemical pulp and mechanical pulp (GP), and which is recycled pulp from corrugated boxes, fiber length and bonding properties were decreased disastrously. We believe recycled cellulosic fibers (recycled chemical pulp and OCC in this case), which went through hornification, were less resistant to the mechanical impact than virgin chemical pulp. For virgin chemical pulp, impact refining allowed no significant fiber length shortening, high WRV, and high mechanical strength.

인치콘택 이론을 이용한 리파이닝 공정 평가 (Evaluation of Refining Process Based on the Inch Contact Theory)

  • 이학래;서만석;허용대;강태영
    • 펄프종이기술
    • /
    • 제35권2호
    • /
    • pp.6-11
    • /
    • 2003
  • Refining process is of critical importance unit process for papermaking that influences freeness as well as many mechanical and physical properties of paper. Refining is the process that requires extensive amount of electrical energy. Thus it is required to evaluate the refining process in terms of its influence on fiber and paper properties as well as its effect on energy consumption. In this study, to evaluate the efficiency of refining process the theory of inch contacts has been employed, and the influence of refining processes on fiber and paper properties has been determined and discussed.

Enzymatic and mechanical treatment on chemical pulp

  • Yung, B.S.;Shin, Yoon-Chul;Jeon, Yang
    • 한국펄프종이공학회:학술대회논문집
    • /
    • 한국펄프종이공학회 1999년도 Proceedings of Pre-symposium of the 10th ISWPC
    • /
    • pp.172-177
    • /
    • 1999
  • Effect of fiber treatment with cellulase (Liftase A40), and with two refining methods (Valley beating and impact refining) on wood fiber and handsheet properties were investigated at three refining levels (300, 400, and 500ml) for two furnishes (NBKP and LBKP). Part of the treated furnishes were classified by 150 mesh screen into fine-free fiber, and fines. Fiber length analysis, WRV, zero-span strength, and other handsheet mechanical properties were compared. The study showed that Liftase A40 lowered the zero-span and the folding endurance of both furnishes (NBKP much more and LBKP much less). Pretreatment with Liftase A 40 followed by refining significantly lowered the fiber length and refining energy to reach to the target freeness. Impact refining, which is done by hitting the fibers vertically with rod at 20% solid content, kept the fiber length increased WRV, and improved handsheet mechanical properties much more than valley beating. Properties of fines from different sources were compared in detail in the study.

골판지 고지의 물리화학적 처리에 의한 강도향상 (Strength Property Improvement of OCC-based Paper by Various Mechanical and Chemical Treatments of its Fiber)

  • 서영범;이종훈
    • 농업과학연구
    • /
    • 제26권1호
    • /
    • pp.21-30
    • /
    • 1999
  • 본 연구는 골판지고지의 가장 중요한 물성인 강도적 성질을 증대시키기 위하여 섬유의 전처리 방법으로서 Hobart mixer를 사용하여 섬유 내부의 결합제거 및 섬유표면에 Microcompression을 형성하여 개질처리 하였으며, 4가지 방법의 고해방법(Valley beater, Kady mill, Impact refining)을 채택하여 골판지고지의 최적고해 방법을 찾는데 그 목적을 두고 이 연구를 수행하였다. 그 결과는 다음과 같다. 1. 섬유장감소를 적게 유발하는 고해방법으로는 Kady mill과 PFI mill의 고해방법 이었으며 고해시 Curl을 펴주는 고해방법을 Kady mell과 Valley beater의 고해방법이 적절하였다. 2. 열단장은 Valley beating의 고해방법에 의하여 강도가 가장 많이 증가되었으며 인열강도는 가장 많이 감소하였다. 섬유전처리를 한 Comp-1과 Comp-2는 고해방식과 상관없이 열단장을 전체적으로 약 10% 증대시켰다. 3. 인열강도는 Comp-1, Comp-2의 전처리방법과 PFI mill 고해로 증대할수 있었다. 4. 파열강도는 Comp-1, Comp-2의 전처리방법과 Valley beater 고해로 증대할수 있었다. 5. 인열강도를 우지한채로 열단장을 가장 높이는 방법은 섬유전처리 방식인 Comp-1이나 Comp-2를 사용하여 Valley beating을 이용하는 방법으로 판단되었다.

  • PDF

골판지 고지의 물리화학적 처리에 의한 강도 향상(제 1 보) (Strength Property Improvement of OCC-based Paper by Chemical and Mechanical Treatments(I))

  • 이종훈;서영범;전양
    • 펄프종이기술
    • /
    • 제32권1호
    • /
    • pp.10-18
    • /
    • 2000
  • To improve the physical properties of OCC (Old Corrugated Container) fibers, we used the mechanical pre-treatment on the fibers before refining . The mechanical action in the Hobart mixer induced high shear and compression on the fibers, which resulted in changes of fiber internal structure, and microcompressions on the surface of the fibers. We evaluated the amount of mechanical treatment on the fibers by fiber curl index for convenience. Four different refining techniques were applied to the pre-treated fibers (valley beater, Kady mill, PFI mill, and Impact refining) to find the best combination of the pre-treatment and the refining methods. Conclusions were summarized as followed. 1. Mechanical pre-treatment in Hobart mixer for more than 1 hour caused the increase of curl index of OCC fibers, and increased breaking length, burst index, and tear index the handsheets more than 10 % in this experiment. 2. Kady mill and PFI mill refining were effective in keeping fiber length from shortening Kady mill and Valley beater refining straightened out the fiber curls, and reduced the curl index. 3. Valley beating reduced fiber length very fast and generated fines more than other refining methods. 4. To increase breaking length and burst strength while keeping tear strength , combination of mechanical pre-treatment and Valley beating were most effective.

  • PDF

재활용 AC4A 알루미늄 합금의 충격 및 피로 특성에 미치는 (Ti-B), Sr 첨가제의 영향 (Effect of (Ti-B) and Sr Additives on Impact and Fatigue Properties of Recycled AC4A Aluminum Casting Alloy)

  • 오승환;김헌주
    • 한국주조공학회지
    • /
    • 제39권4호
    • /
    • pp.61-74
    • /
    • 2019
  • The effects of Sr and (Ti-B) additives on the impact and fatigue properties of recycled (35% scrap content) AC4A aluminum alloy are investigated here. The acicular morphology of the eutectic Si phase of as-cast specimens was converted to the fibrous one with Sr additives. The grain size of the α-solid solution decreased by the addition of (Ti-B) additives. The crack initiation energy (Ei) of the impact absorption energy decreased due to the incorporation of an oxide film and inclusions depending on the scrap used. The modification of the eutectic Si morphology by Sr additives is considered as the main factor of the increase of the average impact absorption energy (Et). The addition of (Ti-B) additives contributed to an increase in the occurrence of crack deflections due to the refining of α-Al grains, resulting in improved fatigue properties.

Designing an Evaluation Method for the in-situ Impact Strength of Rollable Devices

  • Hyojung Son;Ki-Yong Lee;Byoung-Seong Jeong
    • 공업화학
    • /
    • 제35권2호
    • /
    • pp.148-153
    • /
    • 2024
  • In this study, a methodology for evaluating impact strength in rollable devices was developed, focusing on measuring impact strength and evaluating rolling and unrolling durability simultaneously, with findings reported from tests on a real demonstration unit. The study utilized a flexible and rollable polyimide (PI) substrate for the evaluations. The chosen parameters for this methodology were a flat-type impactor, weights of 300 g, 500 g, and 1000 g, a rolling shaft ranging from 30 R to 5 R, and the positioning of the impactor. The results revealed that the difference in defect rates when comparing the 300 g and 500 g weights was minimal. However, the adoption of a 1000 g weight markedly increased the defect count due to damage to the PI film's surface. Furthermore, an uptick in rolling and unrolling cycles led to more pronounced surface scratches on the PI film. These methods and findings are poised to make a substantial contribution towards refining reliability testing for a wide array of rollable device applications, including smartphones, watches, pads, and wearable technology.

일렉트로가스 용접부의 조직 및 인성에 관한 연구 (A Study on Microstructure and Thoughness of Electrogas Weldments)

  • 이해우;장태원;이윤수;석한길;강성원
    • Journal of Welding and Joining
    • /
    • 제14권1호
    • /
    • pp.68-74
    • /
    • 1996
  • The microstructure of HAZ and the mechanical properties in weldments such as hardness and toughness were studied for mild steel and AH36 grade TMCP steel, as increasing heat input with electrogas welding process. The results of this study can be summarized as follow: 1) In the HAZ of mild steel, the width of coarse grained zone was larger than that of the nomalized zone, however in the case of TMCP steel, the nomalized zone was wider than the coarse grained zone. 2) The grain size of HAZ become coarse with increasing heat input. And at the same heat input, the grain size of TMCP steel was more coarser than that of mild steel. 3) According to the change of heat input, the deviation of hardness values was not significant, and the maximum values of hardness was not in HAZ but in the weld metal. And the hardness values in root part was higher than in face part. 4) Even though the HAZ grain size of mild steel was larger than that of TMCP steel, the impact values for mild steel was higher than those for TMCP steel, and the impact values in face part was higher than those in root part.

  • PDF

An Alternative Fiber Processing Method

  • Seo, Yung-Bum;Lee, Chun-Han
    • 펄프종이기술
    • /
    • 제43권5호
    • /
    • pp.34-42
    • /
    • 2011
  • A fiber processing method, which might be an alternative for conventional refining process, was introduced. The method consists of repetitive, gentle, mechanical impacts on fibers, followed by fiber uncurling process. This method was very effective for OCC and BCTMP for increasing WRVs (water retention value) while keeping fiber lengths from shortening. For OCC and BCTMP, gentle mechanical impacts on fibers using Hobart mixer increased breaking lengths and tear strengths simultaneously at fast drainage level, and straightening fibers using kady mill increased those strength properties further. For SwBKP and HwBKP, only mechanical impacts using the Hobart mixer were effective on increasing tensile and tear strength at fast drainage, but there were no further increase by kady mill treatment. The strength increases of BCTMP by this alternative fiber processing method were exceptionally high. An extensive engineering development should be followed to actualize this fiber processing mechanism in an energy-effect way.