• Title/Summary/Keyword: Impact property

Search Result 731, Processing Time 0.027 seconds

Fracture Properties of Mo-Ni-Cu Austempered Ductile Iron Cast in Permanent Mold with Austempering Temperature and Time (금형주조한 Mo-Ni-Cu계 구상흑연주철의 오스템퍼링 온도 및 시간에 따른 파괴특성)

  • Yi, Young-Sang;Kang, In-Chan
    • Journal of Korea Foundry Society
    • /
    • v.11 no.4
    • /
    • pp.331-337
    • /
    • 1991
  • Various test specimens were prepared by austempering low alloyed Mo-Ni-Cu ductile iron blocks of high graphite nodule count at 270, 320 or $370^{\circ}C$ for 0.5, 1, 3 or 9hrs. Tensile test, CVN impact test and plane-strain fracture toughness test(compact tension specimen of 50mm W) were done for each heat treatment condition at room temperature. X-ray diffractometer and optical microscope were used to investigate the change of microstructure and relationships between microstructure and test results. The highest retained austenite volume percent at each austempering temperature was corresponded to the highest mechanical property. The highest elongation value of 17%, U.T.S. value of 1,600 MPa or $K_{IC}$ value of 90MPa${\surd}$m were reached at each optimum condition. The best heat treatment condition for fracture toughness were 3hrs' holding time combined with the austempering temperature of 270 and $320^{\circ}C$, and 1hr's of $370^{\circ}C$.

  • PDF

A Study on the Analysis of Environment Performances in High-Rise Residential Building Through Green Building Certification System (친환경건축물 인증제도 평가를 통한 고층 주거용 건물의 환경성능 분석)

  • Chae, Mun-Byoung;Cha, Min-Chul;Jae, Seong-Ho;Seok, Ho-Tae
    • Proceeding of Spring/Autumn Annual Conference of KHA
    • /
    • 2006.11a
    • /
    • pp.281-286
    • /
    • 2006
  • In case of Korea, immovable property like location, land prise or investment value is more highly estimated than quality of life of residents for performance and value of apartment house, because of limited land area or high density of population. But the high level of life has recently caused the increasing demand in better life. As there is no cases to provide the house in bulk due to the housing market condition, it is necessary to evaluate performance and value of structure, disaster prevention safety, habitability, antiquated condition of building and equipment, maintenance condition and so on that has importantly influence on resident's life quality. So, this study aims to understand the actual condition of environmental performance for the present apartment by comparing the designated apartment, which is ready to have completed in Daegu, with the mixed use residential building, which gained the best grade for green building certification system. Also by analyzing and evaluating a right to enjoy sunshine, floor impact noise etc. and indoor air quality.

  • PDF

Fatigue Characteristics of Laser Welded Zirconium Alloy Thin Sheet (레이저 용접된 박판 지르코늄 합금의 피로특성)

  • Jeong, Dong-Hee;Kim, Jae-Hoon;Yoon, Yong-Keun;Park, Joon-Kyoo;Jeon, Kyeong-Rak
    • Journal of Welding and Joining
    • /
    • v.30 no.1
    • /
    • pp.59-63
    • /
    • 2012
  • The spacer grid is one of the main structural components in a fuel assembly. It supports fuel rods, guides cooling water and maintains geometry from external impact load and cyclic stress by the vibration of nuclear fuel rod, it is necessary to have sufficient strength against dynamic external load and fatigue strength. In this study, the mechanical properties and fatigue characteristics of laser beam welded zircaloy thin sheet are examined. The material used in this study is a zirconium alloy with 0.66 mm of thickness. The fatigue strength under cyclic load was evaluated at stress ratio R=0.1. S-N curves are presented with statistical testing method recommend by JSME- S002 and compared with S-N curves at R.T. and $315^{\circ}C$. As a result of the experimental approach, the design guide of fatigue strength is proposed and the results obtained from this study are expected to be useful data for spacer gird design.

Influence of Organomodified Nanoclay on the Mechanical and Flammability behavior of Jute Fabric/Vinyl Ester Nanocomposites

  • Latif, M.;Prabhakar, M.N.;Nam, Gi-Beop;Lee, Dong-Woo;Song, Jung-Il
    • Composites Research
    • /
    • v.30 no.5
    • /
    • pp.303-309
    • /
    • 2017
  • Organo-montmorillonite (OMMT) has attracted much attention for fiber-reinforced polymer composites as a filler material due to high aspect ratio and low charge density. The present study focused on the fabrication of nanocomposites using Vinyl ester and Jute fabric as matrix and reinforcement respectively. The OMMT was uniformly dispersed in vinyl ester resin at 1, 2 and 3 wt%, loading through high speed mechanical stirrer at room temperature and further nanocomposites were manufactured through vacuum assisted resin infusion (VARI) technique. Effects of OMMT on the mechanical properties of vinyl ester/Jute composites were carefully investigated through tensile, bending and Izod impact tests, which revealed significant improvement in mechanical properties. The morphology of the nanocomposites after tensile test was investigated by SEM which affirmed that OMMT filled nanocomposites has improved interactions with the host matrix than the pure composites. Based on the nature and flame retardancy mechanism, the OMMT slightly improved the flammability property which was clearly explained by horizontal burning test.

A Study on Passive Cooling Strategies for Buildings in Hot Humid Region of Nepal

  • Manandhar, Rashmi;Yoon, Jongho
    • KIEAE Journal
    • /
    • v.15 no.1
    • /
    • pp.53-60
    • /
    • 2015
  • Increase in energy consumption in building is a big concern world over. In Nepal, energy crisis is a big issue but energy demand in buildings is barely even thought about. In the southern part of Nepal, where the weather is mostly hot during the year, cooling in buildings is very important. This is an initial study regarding building design strategies which focuses on cooling energy consumption in the building. It can be seen from the study that simple passive strategies can be applied in building design which can support in decreasing cooling load. Different passive cooling strategies like orientation, building size, thermal mass, window design and two direct cooling strategies have been investigated in this study. Direct cooling strategies like shading and natural cooling helps in passive cooling. Different desing strategies have different impact on the cooling energy requirement and the study shows that thermo physical property of building materials has the maximum effect on the energy consumption of the building. Each design strategy creates and average of 20% decrease in energy consumption, whereas the thermal conductivity can have as much as 10 times more effect on the energy consumption than other design strategies.

Through Thickness Microstructure and Mechanical Properties in a Forged Thick Section Mod. 9Cr-1Mo Steel (고온 원자로용 Mod. 9Cr-1Mo강 후판재의 깊이에 따른 미세조직 및 기계적 특성 변화)

  • Lee, Sun-Hee;Park, Sang-Gyu;Kim, Min-Chul;Lee, Bong-Sang;Kim, Sun-Jin
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.7 no.2
    • /
    • pp.42-47
    • /
    • 2011
  • The purpose of this study is to investigate the effects of through thickness on the mechanical properties and microstructural features in Mod. 9Cr-1Mo steels for RPVs. The microstructures at all locations were typically tempered martensite, but small amount of delta ferrite was observed at the center region. The prior austenite grain size increased with the depth from the surface. The yield strengths of center and 1/4T location were higher than that of surface by 30MPa. The impact toughness of center was low compared to those of other specimens. Also, upper shelf energy was low at the center. The toughness deterioration in center might be caused by larger size of the prior austenite grains and existence of the delta ferrite.

A Study on the Effect of Heat Input on the Microstructure and Toughness of Weldments Made by Domestic Flux Cored Wires. (국산 플럭스 코어드 와이어 용접에서 입열량이 용접부의 미세조직과 인성에 미치는 영향)

  • 고진현;국정한
    • Journal of Welding and Joining
    • /
    • v.11 no.4
    • /
    • pp.57-69
    • /
    • 1993
  • In the present study, the microstructure and Charpy V notch toughness of multipass $CO_2$ FCA weldment in three different heat inputs(1-3KJ/mm)were investigated. The weldments using two different domestic FCAW wires(AWS E71T-1 and E71T-5 equivalent) in C-Mn steel were chemically analysed. The following conclusions can be inferred. 1. T-1 wire Showed a stable arc transfer, less spatter and harsh, a better bead spreading and easy slag removal, whereas T-5 wire suffered from the arc stability, which tended to increase spatter and produce a more convex bead. 2.The microsturctures of the top beads of the weldments in three different heat inputs consisted of coarse-grained boundary ferrite and Widmanstatten ferrite side plate with increasing heat inputs. The modest fraction of acicular ferrite in the two wire weldments was observed in the 2KJ/mm heat input. 3.The fine-grained reheated zones of both welds consisted of a duplex microstructure of polygonal ferrite and second phases. 4. The basic flux weldment of T-5wires showed a higher Charpy impact property than that of T-1 wires because of a higher fraction of acicular ferrite in the weld microstructure.

  • PDF

Adaptive Fuzzy Inference System using Pruning Techniques

  • Kim, Chang-Hyun;Jang, Byoung-Gi;Lee, Ju-Jang
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2003.09a
    • /
    • pp.415-418
    • /
    • 2003
  • Fuzzy modelling has the approximation property far the given input-output relationship. Especially, Takagi-Sugeno fuzzy models are widely used because they show very good performance in the nonlinear function approximation problem. But generally there is not the systematic method incorporating the human expert's knowledge or experience in fuzzy rules and it is not easy to End the membership function of fuzzy rule to minimize the output error as well. The ANFIS (Adaptive Network-based Fuzzy Inference Systems) is one of the neural network based fuzzy modelling methods that can be used with various type of fuzzy rules. But in this model, it is the problem to End the optimum number of fuzzy rules in fuzzy model. In this paper, a new fuzzy modelling method based on the ANFIS and pruning techniques with the measure named impact factor is proposed and the performance of proposed method is evaluated with several simulation results.

  • PDF

The Impact of Building Types on Fire Damage by Month

  • Yi, Kyoo-Jin
    • Journal of the Korea Institute of Building Construction
    • /
    • v.19 no.6
    • /
    • pp.567-575
    • /
    • 2019
  • Statistics show that while the number of fires has decreased over the last decade, losses of human life and economic property due to fire have increased. Moreover, the number of large-scale fires that have occurred in recent years has resulted in heightened public anxiety. This study aims to identify a specific period of the year most vulnerable to fire, and fire trends, such as damage of fire to humans, to the economy, and different building types. For this purpose, we analyzed human and economic damages using statistics related to fire from 2007 to 2017 and provided a monthly distribution of fire damages both to humans and to the economy by building type. We also identified the relationship between the human damage and the economy damage, and compared the economic losses per casualty by building type. The human damage in residential buildings occupied the highest portion, whereas the economic damage of industrial buildings represented more than a half of all economic damage due to fire. The economic damage per casualty was shown highest for industrial buildings and has also increased rapidly in recent years.

Impact of mesenchymal stem cell senescence on inflammaging

  • Lee, Byung-Chul;Yu, Kyung-Rok
    • BMB Reports
    • /
    • v.53 no.2
    • /
    • pp.65-73
    • /
    • 2020
  • Life expectancy has dramatically increased around the world over the last few decades, and staying healthier longer, without chronic disease, has become an important issue. Although understanding aging is a grand challenge, our understanding of the mechanisms underlying the degeneration of cell and tissue functions with age and its contribution to chronic disease has greatly advanced during the past decade. As our immune system alters with aging, abnormal activation of immune cells leads to imbalance of innate and adaptive immunity and develops a persistent and mild systemic inflammation, inflammaging. With their unique therapeutic properties, such as immunomodulation and tissue regeneration, mesenchymal stem cells (MSCs) have been considered to be a promising source for treating autoimmune disease or as anti-aging therapy. Although direct evidence of the role of MSCs in inflammaging has not been thoroughly studied, features reported in senescent MSCs or the aging process of MSCs are associated with inflammaging; MSC niche-driven skewing of hematopoiesis toward the myeloid lineage or oncogenesis, production of pro-inflammatory cytokines, and weakening their modulative property on macrophage polarization, which plays a central role on inflammaging development. This review explores the role of senescent MSCs as an important regulator for onset and progression of inflammaging and as an effective target for anti-aging strategies.