• 제목/요약/키워드: Impact pressure coefficient

검색결과 73건 처리시간 0.026초

틸팅열차 주행시 기존선 흙 노반의 응답특성 (Tilting Train-induced Roadbed Response on the Conventional Line)

  • 고태훈;곽연석;황선근;사공명
    • 한국철도학회논문집
    • /
    • 제14권5호
    • /
    • pp.433-441
    • /
    • 2011
  • 한글초록은 기존선 고속화의 여러 대안 중 선로의 직 복선화 및 신선 건설에 의한 기존철도의 고속화는 시간단축 효과나 선로용량 증대의 폭은 크지만 막대한 투자 재원이 소요된다. 이에 비해 기존선을 그대로 사용하면서 속도를 향상하기 위해 선형개량 및 준고속 틸팅열차의 투입은 기존 인프라를 이용함으로서 보다 경제적이며 실용적이라는 장점이 있다. 하지만, 틸팅열차의 경우 기존열차와는 주행 메카니즘이 다르기 때문에 주행 안전성을 확보하기 위해서는 기존에 부설되어 있는 궤도노반의 성능평가가 선행되어야 한다. 또한 열차주행에 따라 발생하는 노반의 침하는 궤도틀림이나 열차의 탈선 등을 유발할 수 있으므로 틸팅열차 주행에 의해 발생하는 궤도 부담력에 따른 노반의 거동 특성을 분석할 필요가 있다. 본 연구에서는 현장계측을 통해 틸팅열차의 기존선 주행속도별(120~180km/h) 주행안전성과 노반성능을 평가하였다. 모든 주행속도에서 탈선계수와 윤중감소율 허용한계치를 만족하였으며, 또한 노반성능 면에서는 기존 운행 고속열차(KTX)에 비하여 작은 노반응답(노반압력, 노반침하, 노반진동가속도)을 보였다. 이러한 계측 결과를 기반으로, 기존열차와 혼용 투입될 틸팅열차는 본 연구의 계측대상 노선과 동일한 성능수준의 궤도노반에서는 최고운영속도(180km/h)에서 안전한 주행이 가능할 것으로 판단된다.

두 족저압 측정장비의 비교 분석 (Comparative Analysis of Two Pedobarography Systems)

  • 강호원;변수민;김대유;조윤재;경민규;이동연
    • 대한족부족관절학회지
    • /
    • 제28권1호
    • /
    • pp.21-26
    • /
    • 2024
  • Purpose: Foot pressure measurement devices are used widely in clinical settings for plantar pressure assessments. Despite the availability of various devices, studies evaluating the inter-device reliability are limited. This study compared plantar pressure measurements obtained from HR Mat (Tekscan Inc.) and EMED-n50 (Novel GmbH). Materials and Methods: The study involved 38 healthy male volunteers. The participants were categorized into two groups based on the Meary's angle in standing foot lateral radiographs: those with normal feet (angles ranging from -4° to 4°) and those with mild flatfeet (angles from -8° to -15°). The static and dynamic plantar pressures of the participants were measured using HR Mat and EMED-n50. The reliability of the contact area and mean force was assessed using the interclass correlation coefficient (ICC). Furthermore, the differences in measurements between the two devices were examined, considering the presence of mild flatfoot. Results: The ICC values for the contact area and mean force ranged from 0.703 to 0.947, indicating good-to-excellent reliability across all areas. EMED-n50 tended to record higher contact areas than HR Mat. The mean force was significantly higher in the forefoot region when measured with EMED-n50, whereas, in the hindfoot region, this difference was observed only during static measurements with HR Mat. Participants with mild flatfeet exhibited significantly higher contact areas in the midfoot region for both devices, with no consistent differences in the other parameters. Conclusion: The contact area and mean force measurements of the HR Mat and EMED-n50 showed high reliability. On the other hand, EMED-n50 tended to record higher contact areas than HR Mat. In cases of mild flatfoot, an increase in contact area within the midfoot region was observed, but no consistent impact on the differences between the two devices was evident.

등온열처리에 따른 2.25Cr-1Mo강의 초음파 특성 변화 (Change in Ultrasonic Characteristics with Isothermal Heat Treatment of 2.25Cr-1Mo Steel)

  • 남영현;백운봉;박종서;남승훈
    • 대한기계학회논문집A
    • /
    • 제37권3호
    • /
    • pp.353-358
    • /
    • 2013
  • 본 논문은 등온열처리 온도 및 시간에 따른 2.25Cr-1Mo강의 초음파 특성 변화를 조사하였다. Charpy 충격시험과 경도시험이 3종류의 열처리조건을 가지는 각 시편들에 대하여 실시되었다. 종파를 이용한 펄스-에코법이 초음파의 감쇠와 속도 측정에 사용되었다. 연취성천이온도(FATT)는 등온열처리 시간이 길어짐에 따라 증가하였는데, 이는 인성이 감소되고 있음을 의미한다. 등온열처리 시간과 온도의 증가와 함께 종파의 속도 및 초음파의 감쇠계수는 증가하였다.

잠수함 승조원의 이직의도 요인 분석을 통한 정책방안제시- Kano모델을 이용하여 - (Study of the Factors of a Submarine Crews' Turnover Intention Based on Kano Model and Suggestion of the Policy Measures)

  • 배대석;채명신
    • 한국산학기술학회논문지
    • /
    • 제15권8호
    • /
    • pp.4950-4960
    • /
    • 2014
  • 본 연구는 잠수함 승조원들의 이직의도 요인을 분석하기 위해 설문 조사를 통한 실증적 연구를 실시하였으며, 분석도구로 이요인 이론을 토대로 한 Kano모델과 Timko 고객만족계수를 이용하였다. 본 연구는 2013년 11월 1일부터 30일까지 잠수함 승조원 408명을 대상으로 설문조사를 실시하였으며 분석결과 다음과 같은 결과를 도출하였다. 잠수함 승조원들은 잠수함의 열악한 근무환경, 수압에 의한 신체적 위험, 밀폐된 공간에서의 불안감 그리고 불확실한 계급 정년 등이 이직을 생각할 때 가장 많은 영향을 미치는 것으로 분석되었다. 이러한 결과를 바탕으로 분석된 요인에 대해 복지적인 측면과 정책적인 측면에서 요인별로 해소방안을 제시하였다.

ROLE OF PASSIVE SAFETY FEATURES IN PREVENTION AND MITIGATION OF SEVERE PLANT CONDITIONS IN INDIAN ADVANCED HEAVY WATER REACTOR

  • Jain, Vikas;Nayak, A.K.;Dhiman, M.;Kulkarni, P.P.;Vijayan, P.K.;Vaze, K.K.
    • Nuclear Engineering and Technology
    • /
    • 제45권5호
    • /
    • pp.625-636
    • /
    • 2013
  • Pressing demands of economic competitiveness, the need for large-scale deployment, minimizing the need of human intervention, and experience from the past events and incidents at operating reactors have guided the evolution and innovations in reactor technologies. Indian innovative reactor 'AHWR' is a pressure-tube type natural circulation based boiling water reactor that is designed to meet such requirements, which essentially reflect the needs of next generation reactors. The reactor employs various passive features to prevent and mitigate accidental conditions, like a slightly negative void reactivity coefficient, passive poison injection to scram the reactor in event of failure of the wired shutdown systems, a large elevated pool of water as a heat sink inside the containment, passive decay heat removal based on natural circulation and passive valves, passive ECC injection, etc. It is designed to meet the fundamental safety requirements of safe shutdown, safe decay heat removal and confinement of activity with no impact in public domain, and hence, no need for emergency planning under all conceivable scenarios. This paper examines the role of the various passive safety systems in prevention and mitigation of severe plant conditions that may arise in event of multiple failures. For the purpose of demonstration of the effectiveness of its passive features, postulated scenarios on the lines of three major severe accidents in the history of nuclear power reactors are considered, namely; the Three Mile Island (TMI), Chernobyl and Fukushima accidents. Severe plant conditions along the lines of these scenarios are postulated to the extent conceivable in the reactor under consideration and analyzed using best estimate system thermal-hydraulics code RELAP5/Mod3.2. It is found that the various passive systems incorporated enable the reactor to tolerate the postulated accident conditions without causing severe plant conditions and core degradation.

Two-dimensional curved panel vibration and flutter analysis in the frequency and time domain under thermal and in-plane load

  • Moosazadeh, Hamid;Mohammadi, Mohammad M.
    • Advances in aircraft and spacecraft science
    • /
    • 제8권4호
    • /
    • pp.345-372
    • /
    • 2021
  • The analysis of nonlinear vibrations, buckling, post-buckling, flutter boundary determination and post-flutter behavior of a homogeneous curved plate assuming cylindrical bending is conducted in this article. Other assumptions include simply-supported boundary conditions, supersonic aerodynamic flow at the top of the plate, constant pressure conditions below the plate, non-viscous flow model (using first- and third-order piston theory), nonlinear structural model with large deformations, and application of mechanical and thermal loads on the curved plate. The analysis is performed with constant environmental indicators (flow density, heat, Reynolds number and Mach number). The material properties (i.e., coefficient of thermal expansion and modulus of elasticity) are temperature-dependent. The equations are derived using the principle of virtual displacement. Furthermore, based on the definitions of virtual work, the potential and kinetic energy of the final relations in the integral form, and the governing nonlinear differential equations are obtained after fractional integration. This problem is solved using two approaches. The frequency analysis and flutter are studied in the first approach by transferring the handle of ordinary differential equations to the state space, calculating the system Jacobin matrix and analyzing the eigenvalue to determine the instability conditions. The second approach discusses the nonlinear frequency analysis and nonlinear flutter using the semi-analytical solution of governing differential equations based on the weighted residual method. The partial differential equations are converted to ordinary differential equations, after which they are solved based on the Runge-Kutta fourth- and fifth-order methods. The comparison between the results of frequency and flutter analysis of curved plate is linearly and nonlinearly performed for the first time. The results show that the plate curvature has a profound impact on the instability boundary of the plate under supersonic aerodynamic loading. The flutter boundary decreases with growing thermal load and increases with growing curvature.

3D Numerical investigation of a rounded corner square cylinder for supercritical flows

  • Vishwanath, Nivedan;Saravanakumar, Aditya K.;Dwivedi, Kush;Murthy, Kalluri R.C.;Gurugubelli, Pardha S.;Rajasekharan, Sabareesh G.
    • Wind and Structures
    • /
    • 제35권1호
    • /
    • pp.55-66
    • /
    • 2022
  • Tall buildings are often subjected to steady and unsteady forces due to external wind flows. Measurement and mitigation of these forces becomes critical to structural design in engineering applications. Over the last few decades, many approaches such as modification of the external geometry of structures have been investigated to mitigate wind-induced load. One such proven geometric modification involved the rounding of sharp corners. In this work, we systematically analyze the impact of rounded corner radii on the reducing the flow-induced loading on a square cylinder. We perform 3-Dimensional (3D) simulations for high Reynolds number flows (Re=1 × 105) which are more likely to be encountered in practical applications. An Improved Delayed Detached Eddy Simulation (IDDES) method capable of capturing flow accurately at large Reynolds numbers is employed in this study. The IDDES formulation uses a k-ω Shear Stress Transport (SST) model for near-wall modelling that prevents mesh-induced separation of the boundary layer. The effects of these corner modifications are analyzed in terms of the resulting variations in the mean and fluctuating components of the aerodynamic forces compared to a square cylinder with no geometric changes. Plots of the angular distribution of the mean and fluctuating coefficient of pressure along the square cylinder's surface illustrate the effects of corner modifications on the different parts of the cylinder. The windward corner's separation angle was observed to decrease with an increase in radius, resulting in a narrower and longer recirculation region. Furthermore, with an increase in radius, a reduction in the fluctuating lift, mean drag, and fluctuating drag coefficients has been observed.

Full-scale TBM excavation tests for rock-like materials with different uniaxial compressive strength

  • Gi-Jun Lee;Hee-Hwan Ryu;Gye-Chun Cho;Tae-Hyuk Kwon
    • Geomechanics and Engineering
    • /
    • 제35권5호
    • /
    • pp.487-497
    • /
    • 2023
  • Penetration rate (PR) and penetration depth (Pe) are crucial parameters for estimating the cost and time required in tunnel construction using tunnel boring machines (TBMs). This study focuses on investigating the impact of rock strength on PR and Pe through full-scale experiments. By conducting controlled tests on rock-like specimens, the study aims to understand the contributions of various ground parameters and machine-operating conditions to TBM excavation performance. An earth pressure balanced (EPB) TBM with a sectional diameter of 3.54 m was utilized in the experiments. The TBM excavated rocklike specimens with varying uniaxial compressive strength (UCS), while the thrust and cutterhead rotational speed were controlled. The results highlight the significance of the interplay between thrust, cutterhead speed, and rock strength (UCS) in determining Pe. In high UCS conditions exceeding 70 MPa, thrust plays a vital role in enhancing Pe as hard rock requires a greater thrust force for excavation. Conversely, in medium-to-low UCS conditions less than 50 MPa, thrust has a weak relationship with Pe, and Pe becomes directly proportional to the cutterhead rotational speed. Furthermore, a strong correlation was observed between Pe and cutterhead torque with a determination coefficient of 0.84. Based on these findings, a predictive model for Pe is proposed, incorporating thrust, TBM diameter, number of disc cutters, and UCS. This model offers a practical tool for estimating Pe in different excavation scenarios. The study presents unprecedented full-scale TBM excavation results, with well-controlled experiments, shedding light on the interplay between rock strength, TBM operational variables, and excavation performance. These insights are valuable for optimizing TBM excavation in grounds with varying strengths and operational conditions.

Wind loads and load-effects of large scale wind turbine tower with different halt positions of blade

  • Ke, Shitang;Yu, Wei;Wang, Tongguang;Zhao, Lin;Ge, Yaojun
    • Wind and Structures
    • /
    • 제23권6호
    • /
    • pp.559-575
    • /
    • 2016
  • In order to investigate the influence of different blade positions on aerodynamic load and wind loads and load-effects of large scale wind turbine tower under the halt state, we take a certain 3 MW large scale horizontal axis three-blade wind turbine as the example for analysis. First of all, numerical simulation was conducted for wind turbine flow field and aerodynamic characteristics under different halt states (8 calculating conditions in total) based on LES (large eddy simulation) method. The influence of different halt states on the average and fluctuating wind pressure coefficients of turbine tower surface, total lift force and resistance coefficient, circular flow and wake flow characteristics was compared and analysed. Then on this basis, the time-domain analysis of wind loads and load-effects was performed for the wind turbine tower structure under different halt states by making use of the finite element method. The main conclusions of this paper are as follows: The halt positions of wind blade could have a big impact on tower circular flow and aerodynamic distribution, in which Condition 5 is the most unfavourable while Condition 1 is the most beneficial condition. The wind loads and load-effects of disturbed region of tower is obviously affected by different halt positions of wind blades, especially the large fluctuating displacement mean square deviation at both windward and leeward sides, among which the maximum response occurs in $350^{\circ}$ to the tower top under Condition 8; the maximum bending moment of tower bottom occurs in $330^{\circ}$ under Condition 2. The extreme displacement of blade top all exceeds 2.5 m under Condition 5, and the maximum value of windward displacement response for the tip of Blade 3 under Condition 8 could reach 3.35 m. All these results indicate that the influence of halt positions of different blades should be taken into consideration carefully when making wind-resistance design for large scale wind turbine tower.

머신 러닝을 이용한 밸브 사이즈 및 종류 예측 모델 개발 (Data-driven Modeling for Valve Size and Type Prediction Using Machine Learning)

  • 김찬호;최민식;주종효;이아름;윤건;조성호;김정환
    • Korean Chemical Engineering Research
    • /
    • 제62권3호
    • /
    • pp.214-224
    • /
    • 2024
  • 밸브는 유량과 압력 조절 등의 중요한 역할을 수행하며, 적절한 밸브 사이즈와 유형 선택이 필요하다. Engineering Procurement Construction (EPC) 산업에선 밸브 사이즈 계수(Cv)의 수식적 계산을 바탕으로 사이즈와 유형을 선정해왔으나 이러한 방식은 전문가의 많은 시간과 비용이 요구되어 비효율적이다. 본 연구는 이를 해결하기위해 머신 러닝기법을 이용한 밸브 사이즈 및 유형 예측 모델을 개발하였다. Artificial neural network (ANN), Random Forest, XGBoost, Catboost의알고리즘을 적용하여 모델들을 개발하였으며, 평가 지표로는 사이즈 예측에는 Normalized root mean squared error (NRMSE)와 R2를, 종류 예측에는 F1 score를 적용하였다. 또한, 유체 상에 따른 영향을 확인하고자 유체 전체, 액체, 기체, 스팀의 4개의 데이터 세트로 사례 연구를 진행하였다. 연구 결과, 사이즈의 경우 전체, 액체, 기체에선 Catboost(R2기준, 전체: 0.99216, 액체: 0.98602, 기체: 0.99300. NRMSE 기준, 전체: 0.04072, 액체: 0.04886, 기체: 0.03619)가, 스팀에선 Random Forest가(R2: 0.99028, NRMSE: 0.03493) 가장 뛰어난 모델임을 확인하였다. 종류의 경우 Catboost가 모든 데이터에서 가장 높은 성과를 제시하였다(F1 score 기준, 전체: 0.95766, 액체: 0.96264, 기체: 0.95770, 스팀: 1.0000). 본 연구에서 제안한 모델들을 적용할 경우, 주어진 조건에 따른 밸브 선택을 도와 의사결정 속도를 높여줄 것으로 기대된다.