• Title/Summary/Keyword: Impact limiter

Search Result 23, Processing Time 0.036 seconds

Formulation on the Empirical Equation of the Cask Impact Forces by Dimensional Analysis (차원해석을 이용한 사용후 핵연료 수송용기의 충격력 실험식 공식화)

  • Kim Yong-Jae;Choi Young-Jin;Lee Young-Shin
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.18 no.3
    • /
    • pp.245-254
    • /
    • 2005
  • Radioactive material is used in the various fields. The numbers of transport for radioactive material have been gradually increased in both domestic and International regions. The safety of the cask should be secured to safely transport of radioactive material. The korean atomic law and the IAEA safety standards prescribe regulations lot the safe transport of radioactive material The cask for spent fuel is comprised of the body and the impact limiter. In this study, the empirical equation of the cask impact force is proposed based on the dimensional analysis. Using this empirical equation the characteristics of the impact limiter are analyzed. The results are also validated by comparing with the previous results of the impact area method and the finite element analysis. The present method can be used to predict the impact force of the cask.

Application Method and EMTP-RV Simulation of Series Resonance Type Fault Current Limiter for Smart Grid based Electrical Power Distribution System (스마트 그리드 배전계통을 위한 직렬 공진형 한류기 적용 방법 및 EMTP-RV 시뮬레이션 연구)

  • Yun-Seok Ko;Woo-Cheol Lee
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.19 no.2
    • /
    • pp.361-370
    • /
    • 2024
  • In this paper, a method was studied for applying a series resonant type fault current limiter that can be manufactured at low cost to the smart grid distribution system. First, the impact of the harmonic components of the short-circuit fault current injected into the series resonance circuit of the fault current limiter on the peak value of the transient response was analyzed, and a methodology for determining the steady-state response was studied using percent impedance-based fault current computation method. Next, the effectiveness of the method was verified by applying it to a test distribution line. The test distribution system using the designed current limiter was modeled using EMTP_RV, and a three-phase short-circuit fault was simulated. In the fault simulation results, it was confirmed that the steady-state response of the fault current accurately followed the design target value after applying the fault current limiter. In addition, by comparing the fault current waveform before and after applying the fault current limiter, it was confirmed that the fault current was greatly suppressed, confirming the effect of applying the series resonance type current limiter to the distribution system.

Analysis of operation performance of PHILS-based superconducting current limiter connected to MVDC system

  • Seok-Ju Lee;Jae In Lee
    • Progress in Superconductivity and Cryogenics
    • /
    • v.25 no.4
    • /
    • pp.54-59
    • /
    • 2023
  • In this paper, we analyze experimental results by applying the PHILS model to a lab-scale superconducting current limiter system for its actual application in medium-voltage direct current (MVDC) systems. Superconducting current limiters exhibit effective current-limiting performance in circuit breaker operations, particularly in limiting large fault currents within a short period, addressing the challenges posed by the increasing use of renewable energy and the integration of DC medium-voltage distribution systems. The development of such superconducting current limiters faces various technical and cost disadvantages, especially when applying a medium-voltage 35kV level system, which is intended for future introduction. The proven lab-scale superconducting current limiter system and the PHILS model are combined and integrated into the actual system. Our plan involves analyzing the limiter's performance, assessing its impact on the system, and preparing for its application in future medium-voltage systems. Utilizing RTDS, a simulation was conducted by connecting actual scaled-down equipment and systems, with the analysis results presented.

Performance Analysis of Optical Hard-Limiter for The Beat Noise in 2-Dimensional OCDMA Receivers (2차원 OCDMA 수신기에서 비트 잡음에 대한 Optical Hard-Limiter의 성능 분석)

  • 김정중;이인성
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.4C
    • /
    • pp.485-493
    • /
    • 2004
  • The system performance of 2-Dimensional wavelength hopping/time spreading optical CDMA systems is found to be limited by the occurrence of the beat noise between the components of the signal and the multiple user interference. This paper shows that the performance is analyzed under the beat noise and no beat noise to blow impact of the beat noise. To overcome this problem, the OHL(Optical Hard-Limiter) is used in the receiver. The performance is calculated for a optical CDMA system employing asymmetric and symmetric prime-hop 2-Dimensional codes, respectively The analysis results show that the performance improved 3.5 times of simultaneous users of before and after inserting OHL in the case of no beat noise. In the case of beat noise the performance improved 1.5 times of simultaneous users of before and after inserting OHL. The performance marked use of symmetric prime-hop code.

A Study on the Dynamic Behaviors of a Shipping Container Under Drop Impact Loading (낙하충격하중을 받는 방사성물질 수송용기의 동적거동에 관한 연구)

  • 이영신;김용재
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.11
    • /
    • pp.2805-2816
    • /
    • 1994
  • This paper describes dynamic finite element analyses performed to study the dynamic behaviors of a shipping container under the impact onto rigid target due to the accidental fall from the hight of 9 m. Using two and three dimensional techniques, the shipping container which gave the maximum damage, ten different drop orientations are considered ; at intervals of $5^{\circ}$ from $45^{\circ}$ to $90^{\circ}$ According to the present results, the orientation of the shipping container which gave the maximum damage is $85^{\circ}$ from horizontal for oblique drop in the primary impact. In the optimal design of the shipping container, the impact limiter material must be considered importantly because it's proper selection affects the weight and the manufacturing cost of the shipping container. The analysis of the shipping container in this paper demonstrated that the shipping container is structurally sound relative to the regulatory drop test requirements.

The impact of Superconducting Fault Current Limiter on Protection Systems (초전도 한류기가 보호협조에 미치는 영향)

  • Choi, Jong-Kee;Jung, Chae-Gyun;Yang, Beyong-Mo
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.365_366
    • /
    • 2009
  • 전력계통에서 고장발생시 고장전류의 크기를 제한하기 위한 한류기는 전통적인 전력기기와는 다른 특성을 갖는다. 따라서 실계통에 한류기를 도입하기 위해서는 한류기가 계통보호 협조에 미치는 영향의 검토가 선행되어야 한다. 본 논문에서는 한류기의 실계통 적용시 보호협조에 관한 문헌조사를 토대로 한류기와 보호시스템간에 검토가 필요한 사항 및 상관관계 등을 검토하였다.

  • PDF

Comparative Analysis on Current Limiting Characteristics of Hybrid Superconducting Fault Current Limiters (SFCLs) with First Half Cycle Limiting and Non-Limiting Operations

  • Kim, Jin-Seok;Lim, Sung-Hun;Kim, Jae-Chul
    • Journal of Electrical Engineering and Technology
    • /
    • v.7 no.5
    • /
    • pp.659-663
    • /
    • 2012
  • The application of large power transformer into a power distribution system was inevitable due to the increase of power demand and distributed generation. However, the decrease of the power transformer's impedance caused the short-circuit current of the power distribution system to be increase thus, the higher short-circuit current exceeded the cut-off ratings of the protective devices such as circuit breaker. To solve these problems, several countermeasures have been proposed to protect the power system effectively from higher fault current and the superconducting fault current limiter (SFCL) has been expected to be the promising countermeasure. In spite of excellent current limiting performances of the SFCL, on the other hand, the efforts to apply the SFCL into power system has been delayed due to both the limited spaces for the SFCL's installation and its long recovery time after the fault removal. In order to solve these problems, a hybrid SFCL, which can perform either first half cycle limiting of first half cycle non-limiting operation, has been developed by corporation of LSIS (LS Industrial System) and KEPCO (Korea Electric Power Corporation). In this paper, we tried to requirements hybrid SFCL by PSCAD/EMTDC. Simulation results of our analysis of the hybrid SFCL is that its accompanied the characteristics both the limit the fault current and quick recovery caused by the less impact from superconductor.