• Title/Summary/Keyword: Impact energy absorption characteristics

Search Result 104, Processing Time 0.031 seconds

Collapse Characteristics of CFRP Hat Member with Outer Laminated Angle Changes under Hygrothermal Environment with Temperature Changes (다양한 열습환경하에서 최외각층 변화에 따른 CFRP 모자형 부재의 압궤특성)

  • Yang, Yongjun;Hwang, Woochae;Yang, Inyoung
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.23 no.3
    • /
    • pp.243-249
    • /
    • 2014
  • Currently, CFRP composites are rapidly replacing steel plates, as they are lighter, stronger, and more elastic; however, they are poorly suited to hygrothermal and impact-collapsed environments because moisture can alter their molecule arrangement and chemical properties. In this study, environments are experimentally simulated in order to investigate changes in the moisture absorption inside a CFRP composite and to determine its weakest point. Moreover, changes in the moisture absorption ratio at temperatures of $60^{\circ}C$ and $80^{\circ}C$ are studied and compared in order to understand how changes in temperature affect moisture absorption inside CFRP composites. Results show that moisture absorption leads to a strength reduction of around 50%. In addition, the moisture absorption rate inside CFRP composites is shown to change rapidly with increasing temperature. Accordingly, it showed that the change in matrix also has a weak point.

A study on Shock Absorption Performance of Reused Bumper for Passenger Cars (승용차(乘用車) 재활용(再活用) 범퍼의 충격흡수(衝擊吸收) 성능(性能)에 관(關)한 연구(硏究))

  • Kim, Jee-Won;Lee, Chang-Sik
    • Resources Recycling
    • /
    • v.18 no.1
    • /
    • pp.44-51
    • /
    • 2009
  • The purpose of this study is to investigate the performance of shock absorption of recycled bumper applied to the standard of shock absorption for newly-developed bumper. For the experiment, two different passenger cars which have different types of bumper were selected. In this work, two kinds of reused bumpers were tested in accordance with an automotive safety regulation to verify exterior bumpers' impact energy absorption performance. The performance results of reused bumper test show that the shock absorption performance indicated the almost same performance and similar characteristics of 2.5 miles bumper test compared to the absorption performance of new bumper of test vehicles.

Bending Characteristic of CFRP & Hybrid Shaped Hat Structure Member According to Stacking Orientation Angle (적층각도변화에 따른 CFRP & 혼성 모자형 구조부재의 굽힘 특성)

  • Kim, Ji-Hoon;Kim, Jung-Ho;Cha, Cheon-Seok;Yang, In-Young
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.17 no.3
    • /
    • pp.34-39
    • /
    • 2008
  • In this study, CFRP(Carbon Fiber Reinforced Plastics) that has high specific strength and elastic modulus and low thermal strain was used as a material for the lightweight structural member. CFRP is a fiber material as anisotropic material. The anisotropic material is characterized by the change of its mechanical properties according to stacking orientation angle. CFRP orientation angle was oriented in [A/B]s in order to examine the effect of CFRP orientation angle on the characteristics of energy absorption. CFRP is very weak to the impact from the outside. So, when impact is applied to CFRP, its strength is rapidly lowered. The hybrid material was manufactured by combining CFRP to aluminum which is lightweight and widely used for structural members of the automobile. The hybrid member was shaped as a side member that could support the automobile engine and mount and absorb a large amount of impact energy at the front-end in case of automobile collision. The bending test device was manufactured in accordance with ASTM standard, and mounted to UTM for bending test. For comparing bending characteristics of the hybrid member with those of Aluminum and CFRP member, tests were performed for aluminum, CFRP and hybrid member, respectively.

Influence of Reducing Agents and Additives on the Synthesis of ZnSe Nanoparticles (ZnSe 나노분말 합성에 미치는 환원제와 첨가제의 영향)

  • Back, Geum Ji;Lee, Da Gyeong;Lee, Min Seo;Song, Ha Yeon;Hong, Hyun Seon
    • Journal of Powder Materials
    • /
    • v.27 no.3
    • /
    • pp.233-240
    • /
    • 2020
  • Nano-sized ZnSe particles are successfully synthesized in an aqueous solution at room temperature using sodium borohydride (NaBH4) and thioglycolic acid (TGA) as the reducing agent and stabilizer, respectively. The effects of the mass ratio of the reducing agent to Se, stabilizer concentration, and stirring time on the synthesis of the ZnSe nanoparticles are evaluated. The light absorption/emission properties of the synthesized nanoparticles are characterized using ultraviolet-visible (UV-vis) spectroscopy, photoluminescence (PL) spectroscopy, and particle size analyzer (PSA) techniques. At least one mass ratio (NaBH4/Se) of the reducing agent should be added to produce ZnSe nanoparticles finer than 10 nm and to absorb UV-vis light shorter than the ZnSe bulk absorption wavelength of 460 nm. As the ratio of the reducing agent increases, the absorption wavelengths in the UV-vis curves are blue-shifted. Stirring in the atmosphere acts as a deterrent to the reduction reaction and formation of nanoparticles, but if not stirred in the atmosphere, the result is on par with synthesis in a nitrogen atmosphere. The stabilizer, TGA, has an impact on the Zn precursor synthesis. The fabricated nanoparticles exhibit excellent photo-absorption/discharge characteristics, suggesting that ZnSe nanoparticles can be alloyed without the need for organic solutions or high-temperature environments.

Dynamic tensile behavior of SIFRCCs at high strain rates

  • Kim, Seungwon;Park, Cheolwoo;Kim, Dong Joo
    • Computers and Concrete
    • /
    • v.26 no.3
    • /
    • pp.275-283
    • /
    • 2020
  • Reinforced concrete (RC) does not provide sufficient resistance against impacts and blast loads, and the brittle structure of RC fails to protect against fractures due to the lack of shock absorption. Investigations on improving its resistance against explosion and impact have been actively conducted on high-performance fiber-reinforced cementitious composites (HPFRCCs), such as fiber-reinforced concrete and ultra-high-performance concrete. For these HPFRCCs, however, tensile strength and toughness are still significantly lower compared to compressive strength due to their limited fiber volume fraction. Therefore, in this study, the tensile behavior of slurry-infiltrated fiber-reinforced cementitious composites (SIFRCCs), which can accommodate a large number of steel fibers, was analyzed under static and dynamic loading to improve the shortcomings of RC and to enhance its explosion and impact resistance. The fiber volume fractions of SIFRCCs were set to 4%, 5%, and 6%, and three strain rate levels (maximum strain rate: 250 s-1) were applied. As a result, the tensile strength exceeded 15 MPa under static load, and the dynamic tensile strength reached a maximum of 40 MPa. In addition, tensile characteristics, such as tensile strength, deformation capacity, and energy absorption capacity, were improved as the fiber volume fraction and strain rate increased.

Study on Damping Characteristics of Hydropneumatic Suspension Unit of Tracked Vehicle

  • Cho, Jin-Rae;Lee, Hong-Woo;Yoo, Wan-Suk;Lee, Jin-Kyu
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.2
    • /
    • pp.262-271
    • /
    • 2004
  • Hydropneumatic suspension unit is an important part of tracked vehicles to absorb external impact load exerted from the non-paved road and the cannon discharge. Its absorption performance is strongly influenced by both damping and spring forces of the unit. In this paper, we numerically analyze the damping characteristics of the in-arm-type hydropneumatic suspension unit (ISU) by considering four distinct dynamic modes of the ISU damper: jounce-loading, jounce-unloading, rebound-loading and rebound-unloading. The flow rate coefficients determining the oil flow rate through the damper orifice are decided with the help of independent experiments. The wheel reaction force, the flow rate at cracking and the damping energy are parametrically investigated with respect to the orifice diameter and the wheel motion frequency.

Impact Absorption Performance of Multi-layered Composite Structures based on Material-Structure Optimization (소재-구조 최적화 기반 다층-복합재료구조 충격흡수성능)

  • Kim, Byung-Jo;Kim, Tae-Won
    • Composites Research
    • /
    • v.22 no.3
    • /
    • pp.66-73
    • /
    • 2009
  • Total thickness, areal density and mass moment of inertia of materials are important material factors for structural characteristics. In this work, a material-structural optimization was performed up to the maximum ballistic limit of multi-layered composite structures under high impact velocity followed by the investigation of the influence of these factors on an impact absorption performance. A unified model combined with Florence's and Awerbuch-Bonder's models was used in optimizing the multi-layered composite structure consisting of CMC, rubber, aluminum and Al-foam. Total thickness, areal density and mass moment of inertia were used for the optimization constraint. As shown in the results, the ballistic limit determined from a newly developed unified model was closely similar to the finite clement analysis. Additionally, the ballistic limit and impact absorption energy obtained by the optimized structure were improved approximately 16.8% and 26.7%, respectively comparing with a not optimized multi-layered structure.

Numerical and Experimental Investigation on Impact Performance of Fiber Metal Laminates Based on Thermoplastic Composites (열가소성 복합재료를 기반한 섬유금속적층판의 충격 거동에 관한 실험 및 수치적 연구)

  • Lee, Byoung-Eon;Kang, Dong-Sik;Park, Eu-Tteum;Kim, Jeong;Kang, Beom-Soo;Song, Woo-Jin
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.24 no.5
    • /
    • pp.566-574
    • /
    • 2016
  • Fiber metal laminates, which are hybrid materials consisting of metal sheets and composite layers, have contributed to aerospace and automotive industries due to their reduced weight and improved damage tolerance characteristics. In this study, the impact performance of the laminates, which are comprised of a self-reinforced polypropylene and two aluminum sheets, and the pure aluminum alloy sheet material were investigated experimentally via numerical simulation. In order to compare the impact performance, the laminates and aluminum alloy were examined by assessing the impact force, energy time histories, and specific energy absorption. ABAQUS is a commercial software that is used to simulate the actual drop-weight tests. Based on this study, it is noted that the impact performance of the laminates was superior to that of the aluminum alloy. In addition, a good agreement between the experimental and numerical results can be achieved when the impact force and energy time histories from the experiments and the numerical simulations are compared.

A Study on the Optimized Design of the Helmets for Fire and Gas Safety (소방.가스안전용 헬멧의 최적설계에 관한 연구)

  • Cho, Seung-Hyun;Kim, Do-Hyun;Kim, Chung-Kyun
    • Journal of the Korean Institute of Gas
    • /
    • v.12 no.3
    • /
    • pp.24-30
    • /
    • 2008
  • In this paper, the stress and strain characteristics of a helmet shell structure have been analyzed by using the finite element method and Taguchi's design method as functions of the material properties, the thickness of a helmet, the thickness and the number of a bead frame. The optimized design of the helmets for a firefighter and a gas worker is very important for increasing the strength safety and an impact energy absorption capacity of a helmet shell due to an impulsive external force. Thus, the optimized design data of the helmet indicated that the uniform thickness of a helmet shell may be reduced for reducing the total weight of a helmet and increasing the strain energy absorption rate, but the thickness and the number of a bead frame would be increased for increasing the impact strength of the helmet.

  • PDF

Numerical Study on the Strength Safety and Displacement Behaviors of a Helmet (헬멧의 강도안전과 변형거동에 관한 수치적 연구)

  • Kim, Chung-Kyun;Kim, Do-Hyun
    • Journal of the Korean Institute of Gas
    • /
    • v.12 no.4
    • /
    • pp.41-45
    • /
    • 2008
  • This paper presents the numerical study on the strength safety and displacement behaviors of a helmet, which is to protect impact forces and to absorb the impact energy. Four different helmet models including a bead frame and a corrugation damper have been analyzed for the stress and the displacement characteristics by using the finite element method. The computed FEM results show that the bead frame on the summit area of the helmet is very useful to increase the strength safety of the helmet, and the corrugation damper on the lower part of the helmet may increase the energy absorption capacity. Thus, this paper recommends the bead frame and the corrugation damper as new design elements of the helmets.

  • PDF