• Title/Summary/Keyword: Impact Velocity

Search Result 1,361, Processing Time 0.028 seconds

Hydraulic Analysis Using a Two-Dimensional Model(I) : Flow Analysis around Bridge Piers with Pier Shapes (2차원 모형을 이용한 수리해석(I) : 교각형상별 주변부 흐름해석)

  • Kim, Eung-seok;Lee, Seung-hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.7
    • /
    • pp.4936-4941
    • /
    • 2015
  • This study(I) has analyzed hydraulic characteristics with pier shapes by the bridge construction. The pier shapes are classified into total six types such as square, rhombus, octagon, oval, round, and no-piers. One-dimensional model(HEC-RAS) and two-dimensional model (RMA-2) were employed to analyze hydraulic characteristics around bridge piers. Square and rhombus shapes of piers showed velocity vectors in the upstream direction, which has a significant impact on the river bed changes by erosion and sediment transport around the piers. The flow characteristics of the oval type pier was most similar to that of no-pier situation almost without disrupting the river flow. This analysis can help to select pier types in the new bridge construction for the future.

Biomechanical Analysis of the Elderly Gait with a Walking Assistive Device (노인의 보행보조기구 사용 보행시 보행패턴의 변화연구)

  • Yoon, Suk-Hoon
    • Korean Journal of Applied Biomechanics
    • /
    • v.17 no.2
    • /
    • pp.1-9
    • /
    • 2007
  • Walking is not only an essential component of the human mobility, but also is a good exercise. Inability to walk freely can reduce an individual's quality of life and independence substantially. Being a relatively low impact activity, walking is particularly good for the elderly and research has shown that regular walking in the elderly reduces the chance of fall-related injuries and mental diseases as well. In spite of the documented benefits of regular walking, it is still difficult to walk without the aid of assistive devices for the frail elderly who have lower extremity problems. Assistive walking devices(AWD), such as crutches, canes, hiking-poles, T-Poles and walkers, are often prescribed to the elderly to make their walking be safe and efficient. Many researchers have demonstrated the effects of AWDs such as reducing lower extremity loading, improved dynamic/gait stability, yet, no study has been done for gait pattern when the elderly gait with AWDs. Therefore, the purpose of this study was to examine whether T-Poles, one of the AWDs, change the elderly gait pattern. Eight community-dwelling female elderly participated in this study. Laboratory kinematics during walking with T-Poles(PW) and with out T-Poles(NPW) was assessed. PW showed significant increase in step width, stride length, gait velocity and decrease in swing time. No significances were found in lower body joint angles but meaningful trend and pattern were found. Maybe the reason was due to the participants. Our participants were healthy enough so that the effect of T-Poles was minimum. PW also showed typical gait phases which are no single support phase during a gait cycle. It indicates that walking with T-Poles may guarantee safe and confident walking to the frail elderly.

Health Monitoring in Composite Structures using Piezoceramic and fiber Optic Sensors (압전세라믹 센서와 광섬유 센서를 이용한 복합재 구조물의 건전성 모니터링)

  • Kim, C.G.;Sung, D.U.;Kim, D.H.;Bang, H.J.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.23 no.5
    • /
    • pp.445-454
    • /
    • 2003
  • Health monitoring is a major concern not only in the design and manufacturing but also in service stages for composite laminated structures. Excessive loads or low velocity impact can cause matrix cracks and delaminations that may severely degrade the load carrying capability of the composite laminated structures. To develop the health monitoring techniques providing on-line diagnostics of smart composite structures can be helpful in keeping the composite structures sound during their service. In this study, we discuss the signal processing techniques and some applications for health monitoring of composite structures using piezoceramic sensors and fiber optic sensors.

Mechanical Characteristics of CF Laminated Prepreg with UV-thermal Dual Curable Epoxy Resin (광·열경화형 수지를 이용한 탄소섬유 프리프레그의 물리적 특성)

  • Sim, Ji-hyun;Kim, Ji-hye;Park, Sung-min;Koo, Kwang-hoe;Jang, Key-wook;Bae, Jin-seok
    • Textile Coloration and Finishing
    • /
    • v.29 no.1
    • /
    • pp.37-44
    • /
    • 2017
  • An issue of major concern in the utilization of laminated composites based epoxy resin is associated with the occurrence of delaminations or interlaminar cracks, which may be related to manufacturing defects or are induced in service by low-velocity impacts. A strong interfacial filament/brittle epoxy resin bonding can, however, be combined with the high fracture toughness of weak interfacial bonding, when the filaments are arranged to have alternate sections of shear stress. To improve this drawback of the epoxy resin, UV-thermal dual curable resin were developed. This paper presents UV-thermal dual curable resin which were prepared using epoxy acrylate oligomer, photoinitiators, a thermal-curing agent and thermoset epoxy resin. The UV curing behaviors and characteristics of UV-thermal dual curable epoxy resin were investigated using Photo-DSC, DMA and FTIR-ATR spectroscopy. The mechanical properties of UV-thermal dual curable epoxy resin impregnated CF prepreg by UV curable resin content were measured with Tensile, Flextural, ILSS and Sharpy impact test. The obtained results showed that UV curable resin content improves the epoxy toughness.

A Study on the Damage Assesment of Artificial Brittle Materials subjected to Impact Leading (충격하중을 받은 인공취성재료의 손상평가에 관한 연구)

  • Cho, Sang-Ho;Jo, Seul-Ki;Cheon, Dae-Sung;Synn, Joong-Ho;Yang, Hyung-Sik;Kim, Seung-Kon
    • Tunnel and Underground Space
    • /
    • v.18 no.6
    • /
    • pp.457-464
    • /
    • 2008
  • Dynamic fracture mechanism of rock is important to improve rapid excavation method and develop precise damage assesment of rock mass in the vicinity of an excavation. In order to investigate dynamic fracture characteristics and dynamic damage mechanism of brittle materials, this study employed pulse shape-controlled Split Hopkinson Pressure Bar (SHPB) system. The P- and S-wave velocities of the tested samples were measured before and after tests to examine damage of the samples. The decay ratios of the Ultrasonic wave velocities increased with impart velocities and the samples which have lower strength showed higher permanent strain significantly.

The Effects of Visual Biofeedback Balance Training on Functional Ability in Children with Cerebral Palsy : A Pilot Study

  • Yun, Chang-Kyo;Yoo, Ji-Na
    • Journal of the Korean Society of Physical Medicine
    • /
    • v.11 no.3
    • /
    • pp.133-139
    • /
    • 2016
  • PURPOSE: The purpose of this study is to examine the impact of balance training on a three-dimensional balance trainer that provides the up-and-down vertical movement of the knee joint and left-and-right horizontal movement, along with visual feedback on the functional ability of children with spastic cerebral palsy (CPs). METHODS: 8 CPs participated in this study. The experiment was implemented for 40 minutes, three times a week for a total of six weeks. The subjects received general physiotherapy for 15 minutes in each session focused on balance and walking, as based on the neuro-developmental treatment theory. Balance training was performed for 20 minutes on a three-dimensional balance trainer where knee joint movement providing visual feedback is applied. The evaluations were conducted before and after the test, and posture sway was measured using 10 Meter Walking Test (10MWT), Timed Up & Go Test (TUG), and the Good Balance System to evaluate the functional ability and balance of the subjects RESULTS: 10MWT was not statistically significant (p>.05). On the contrary, TUG and postural sway indicate static balance showed a statistically significant decrease (p<.05). In a static balance test using the Good Balance System, the average moving speed statistically significantly decreased in the AP and ML directions (p<.05), and the mean velocity moment also significantly decreased (p<.05). CONCLUSION: These findings suggested that balance training using the three-dimensional balance trainer, with the features of visual feedback and up-and-down knee joint movement effects on increasing dynamic and static balance.

Study of Determination in Measurement System for Safely Managing Debris-Flow (안전한 토석류 관리를 위한 계측기 선정에 관한 연구)

  • Min, Dae-Hong;Yoon, Hyung-Koo
    • Journal of the Korean Society of Safety
    • /
    • v.32 no.3
    • /
    • pp.41-47
    • /
    • 2017
  • Recent studies have shown that there are various systems which can be used to monitor hazardous area in a debris flow location, but lack of methodological research on the exact location where each instrument should be installed has hindered the success of this systems. The objective of this study is to suggest the measurement system for monitoring debris-flow and propose the effective method to determine location of measurement system. Previously studied, from 1991 to 2015, were referred and the applied ratio of every instrument was investigated. The measurement information was divided into 8 categories including rainfall, debris-flow velocity, displacement, fluid pore pressure, ground vibration, image processing, impact force and peak flow depth. The result of this study revealed that the most applied instruments to be rain gauge and geophone for measuring average rainfall and ground vibration respectively. The Analytic Hierarchical Process (AHP) method was selected to determine installation location of instrument and the weighting factors were estimated through fine content, soil thickness, porosity, shear strength, elastic modulus, hydraulic conductivity and saturation. The soil thickness shows highest weights and the fine content relatively demonstrates lowest weights. The score of each position can be calculated through the weighting factors and the lowest score position can be judged as the weak point. The weak point denotes the easily affecting area and thus, the point is suitable for installing the measurement system. This study suggests a better method for safely managing the debris-flow through a precise location for installing measurement system.

Compatibility for Proposed R.94 PDB Test (PDB 시험에 대한 충돌 상호 안전성)

  • Jang, Eun-Ji;Kim, Joseph;Beom, Hyen-Kyun;Kwon, Sung-Eun
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.18 no.3
    • /
    • pp.149-155
    • /
    • 2010
  • Currently various safety tests are being performed in many countries with growing interest in vehicle safety. However the vehicles which have good safety performance in these tests could not secure the good performance in real car to car accident. So new test protocol using progressive deformable barrier (PDB) was proposed by EEVC in Europe, NHTSA in USA and some vehicle manufacturers, etc. The target of PDB test is to control partner protection in addition to self-protection on the same test. The proposal is to update current ECE R.94 frontal ODB test. So barrier, impact speed, overlap are changed to avoid bottoming-out in the test configuration. In this paper 3 different tests (R.94, EuroNCAP and PDB test) were carried out using current production vehicles with same structure. The results of these tests were compared to understand PDB test. As a result PDB test shows the highest vehicle deceleration and dummy injury because PDB offers a progressive increase in stiffness in depth and height. However vehicle intrusion was affected with rather test velocity than stiffness of deformable barrier. PDB deformation data is used for partner protection assessment using PDB software and it shows that the test vehicle is rather not aggressive.

Surface Cover Application for Reduction of Runoff and Sediment Discharge from Sloping Fields (경사지 밭에서 발생하는 토양유실 저감을 위한 피복재 적용)

  • Shin, Min-Hwan;Won, Chul-Hee;Park, Woon-Ji;Choi, Young-Hun;Shin, Jae-Young;Lim, Kyoung-Jae;Choi, Joong-Dae
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.53 no.6
    • /
    • pp.129-136
    • /
    • 2011
  • To measure effects of surface cover on runoff and sediment discharge reduction using rainfall simulator, four(5 m${\times}$30 m scale) plot experiments were conducted in this study. Surface covers made with straw mat, Polyacrylamide (PAM), chaff, and sawdust were simulated 4 times under 31.1~44.4 mm/hr rainfall intensities. Compared with results from control plot, the time of runoff generation is delayed and outflow volume decreased with surface cover. Effects on runoff reduction of straw mat, PAM, sawdust and chaff ranged 4.7~81.5 % and runoff rate reduced by 6.5~76.1 % respectively, when compared with those from control plot. The percentage of decrease in sediment discharge were 99.7~99.8 % from straw mat+sawdust+PAM plots, 85.9~95.6 % from straw mat+PAM plots, and 98.5~99.4 % from straw mat+chaff+PAM plots. The runoff, sediment discharge, and SS concentration reduction efficiencies of the cover materials were outstanding when compared to control plot. It was analyzed that reduction of runoff and sediment discharge were mainly contributed by decrease in rainfall energy impact and flow velocity and increase of infiltration due to the surface cover materials. The results could be used as a base for the development of best management practices (BMPs) to reduce runoff, sediment discharge from sloping field.

Uncertainty for Privacy and 2-Dimensional Range Query Distortion

  • Sioutas, Spyros;Magkos, Emmanouil;Karydis, Ioannis;Verykios, Vassilios S.
    • Journal of Computing Science and Engineering
    • /
    • v.5 no.3
    • /
    • pp.210-222
    • /
    • 2011
  • In this work, we study the problem of privacy-preservation data publishing in moving objects databases. In particular, the trajectory of a mobile user in a plane is no longer a polyline in a two-dimensional space, instead it is a two-dimensional surface of fixed width $2A_{min}$, where $A_{min}$ defines the semi-diameter of the minimum spatial circular extent that must replace the real location of the mobile user on the XY-plane, in the anonymized (kNN) request. The desired anonymity is not achieved and the entire system becomes vulnerable to attackers, since a malicious attacker can observe that during the time, many of the neighbors' ids change, except for a small number of users. Thus, we reinforce the privacy model by clustering the mobile users according to their motion patterns in (u, ${\theta}$) plane, where u and ${\theta}$ define the velocity measure and the motion direction (angle) respectively. In this case, the anonymized (kNN) request looks up neighbors, who belong to the same cluster with the mobile requester in (u, ${\theta}$) space: Thus, we know that the trajectory of the k-anonymous mobile user is within this surface, but we do not know exactly where. We transform the surface's boundary poly-lines to dual points and we focus on the information distortion introduced by this space translation. We develop a set of efficient spatiotemporal access methods and we experimentally measure the impact of information distortion by comparing the performance results of the same spatiotemporal range queries executed on the original database and on the anonymized one.