• Title/Summary/Keyword: Impact Time Control

Search Result 625, Processing Time 0.029 seconds

A Empirical Study on the Patch Impact Assessment Method for Industrial Control Network Security Compliance (산업제어망 보안 컴플라이언스를 위한 패치 영향성 평가 방안에 관한 실증 연구)

  • Choi, Inji
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.30 no.6
    • /
    • pp.1141-1149
    • /
    • 2020
  • Most of the industrial control network is an independent closed network, which is operated for a long time after installation, and thus the OS is not updated, so security threats increase and security vulnerabilities exist. The zero-day attack defense must be applied with the latest patch, but in a large-scale industrial network, it requires a higher level of real-time and non-disruptive operation due to the direct handling of physical devices, so a step-by-step approach is required to apply it to a live system. In order to solve this problem, utility-specific patch impact assessment is required for reliable patch application. In this paper, we propose a method to test and safely install the patch using the regression analysis technique and show the proven results. As a patch impact evaluation methodology, the maximum allowance for determining the safety of a patch was derived by classifying test types based on system-specific functions, performance, and behavior before and after applying the patch. Finally, we report the results of case studies applied directly to industrial control networks, the OS patch has been updated while ensuring 99.99% availability.

Time-to-go Polynomial Guidance Law for Target Observability Enhancement (표적 가관측성 향상을 위한 Time-to-go 다항식 유도법칙)

  • Kim, Tae-Hun;Lee, Chang-Hun;Tahk, Min-Jea
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.39 no.1
    • /
    • pp.16-24
    • /
    • 2011
  • In this paper, we propose a new guidance law for target observability enhancement, which can control both terminal impact angle and acceleration. The proposed guidance law is simple form, combined conventional time-to-go polynomial guidance and a additional bias term which consists of relative position and proportional gain. The guidance law provides oscillatory flight trajectory and it maintains the conventional time-to-go polynomial guidance performance. To investigate the characteristics of the guidance law, we derive the closed-form solution, and various simulations are performed for proving the validity of the proposed guidance.

A New MPEG-2 Rate Control Scheme Using Scene Change Detection

  • Park, Sang-Gyu;Lee, Young-Sun;Chang, Hyun-Sik
    • ETRI Journal
    • /
    • v.18 no.2
    • /
    • pp.61-74
    • /
    • 1996
  • We propose two new rate control schemes to improve MPEG-2 rate control in view of visual quality when scene changes happen. Two proposed schemes are characterized by real-time and non real-time improvement to reduce the impact of scene changes. We also propose a new target-bit prediction method using spatial activity of pictures and present a simple and efficient scene change detection scheme using signed difference of mean absolute difference (MAD). Computer simulation results show that the proposed real-time algorithm effectively alleviates visual quality degradation after scene changes. The proposed non real-time algorithm gives maximum 2 dB improvement in peak signal-to-noise ratio (PSNR) at a scene-changed picture, compared with MPEG-2 rate control scheme and it shows better quality than the real-time one.

  • PDF

New approaches to testing and evaluating the impact capability of coal seam with hard roof and/or floor in coal mines

  • Tan, Y.L.;Liu, X.S.;Shen, B.;Ning, J.G.;Gu, Q.H.
    • Geomechanics and Engineering
    • /
    • v.14 no.4
    • /
    • pp.367-376
    • /
    • 2018
  • Samples composed of coal and rock show different mechanical properties of the pure coal or rock mass. For the same coal seam with different surrounding rocks, the frequency and intensity of rock burst can be significantly different in. First, a method of measuring the strain variation of coal in the coal-rock combined sample was proposed. Second, laboratory tests have been conducted to investigate the influences of rock lithologies, combined forms and coal-rock height ratios on the deformation and failure characteristics of the coal section using this method. Third, a new bursting liability index named combined coal-rock impact energy speed index (CRIES) was proposed. This index considers not only the time effect of energy, but also the influence of surrounding rocks. At last, a new approach considering the influences of roof and/or floor was proposed to evaluate the impact capability of coal seam. Results show that the strength and elastic modulus of coal section increase significantly with the coal-rock height ratio decreasing. In addition, the values of bursting liability indexes of the same coal seam vary greatly when using the new approach. This study not only provides a new approach to measuring the strain of the coal section in coal-rock combined sample, but also improves the evaluation system for evaluating the impact capability of coal.

Impact Analysis of NBTI/PBTI on SRAM VMIN and Design Techniques for Improved SRAM VMIN

  • Kim, Tony Tae-Hyoung;Kong, Zhi Hui
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.13 no.2
    • /
    • pp.87-97
    • /
    • 2013
  • Negative bias temperature instability (NBTI) and positive bias temperature instability (PBTI) are critical circuit reliability issues in highly scaled CMOS technologies. In this paper, we analyze the impacts of NBTI and PBTI on SRAM $V_{MIN}$, and present a design solution for mitigating the impact of NBTI and PBTI on SRAM $V_{MIN}$. Two different types of SRAM $V_{MIN}$ (SNM-limited $V_{MIN}$ and time-limited $V_{MIN}$) are explained. Simulation results show that SNM-limited $V_{MIN}$ is more sensitive to NBTI while time-limited $V_{MIN}$ is more prone to suffer from PBTI effect. The proposed NBTI/PBTI-aware control of wordline pulse width and woldline voltage improves cell stability, and mitigates the $V_{MIN}$ degradation induced by NBTI/PBTI.

The Optimal Design for Vehicle Door Trim Armrest Regard to Side Impact Test (측면충돌을 고려한 자동차 도어트림 팔걸이부 최적 설계)

  • Choi, Hae-Seok;Jang, Ik-Kun;Koo, Ja-Keum;Kim, Sun-Min;Kim, Han-Kyoung
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.882-886
    • /
    • 2004
  • A nation have the regulation for a vehicle safety and interested in the side impact of a vehicle. But we spend a lot of money and time for the side impact test. So we must design a vehicle parts regard to the side impact test. This paper describes a new test method for side impact test. We used DFSS(Design For Six Sigma) process for design of door trim armrest. We searched the door trim armrest control factor and made the experiment plan. We researched the optimal design factor and improved the abdomen injury value of the human dummy.

  • PDF

Composite Guidance Law for Impact Angle Control of Passive Homing Missiles (수동 호밍 유도탄의 충돌각 제어를 위한 복합 유도법칙)

  • Park, Bong-Gyun;Kim, Tae-Hun;Tahk, Min-Jea;Kim, Youn-Hwan
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.42 no.1
    • /
    • pp.20-28
    • /
    • 2014
  • In this paper, based on the characteristics of proportional navigation, a composite guidance law is proposed for impact angle control of passive homing missiles maintaining the lock-on condition of the seeker. The proposed law is composed of two guidance commands: the first command is to keep the look angle constant after converging to the specific look angle of the seeker, and the second is to impact the target with terminal angle constraint and is implemented after satisfying the specific line of sight(LOS) angle. Because the proposed law considers the seeker's filed-of-view(FOV) and acceleration limits simultaneously and requires neither time-to-go estimation nor relative range information, it can be easily applied to passive homing missiles. The performance and characteristics of the proposed law are investigated through nonlinear simulations with various engagement conditions.

An optical sensor of a probing system for inspection of PCBs (인쇄회로기판 검사용 프로브시스템의 광학센서)

  • 심재홍;조형석;김성권
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.1742-1745
    • /
    • 1997
  • We have developed a highly responsible probing system for inspection of electrical properties of assemble PCB$_{s}$ (printed circuit boards). However, as the duration of the impact occurring between a probe and a solder joint on PCB is very short, it is very difficult to control the harmful peak impact force and the slip motion of the probe to sufficient level only by its vorce feedback control with high gains. To overcome these disadvantages of the prototype, it needs ot obtain some information of the solder joint in advance before the contact. In addition, to guarantee the reliability of the probing task, the probing system is required to measure several points around the probale target point at high speed. There fore, to meet such requirements, we propose a new noncontaet sensor capable of detecting simultaneously position and normal vectors of the multiple points around the probable target point in real time. By using this information, we can prepare a control strategy for stable contact motion on impact. In this paper, we described measuring priniciple, design, and development of the sensor. The effectiveness of the proposed sensor is verified through a series of experiments.s.

  • PDF

On-the-go Nitrogen Sensing and Fertilizer Control for Site-specific Crop Management

  • Kim, Y.;Reid, J.F.;Han, S.
    • Agricultural and Biosystems Engineering
    • /
    • v.7 no.1
    • /
    • pp.18-26
    • /
    • 2006
  • In-field site-specific nitrogen (N) management increases crop yield, reduces N application to minimize the risk of nitrate contamination of ground water, and thus reduces farming cost. Real-time N sensing and fertilization is required for efficient N management. An 'on-the-go' site-specific N management system was developed and evaluated for the supplemental N application to com (Zea mays L.). This real-time N sensing and fertilization system monitored and assessed N fertilization needs using a vision-based spectral sensor and controlled the appropriate variable N rate according to N deficiency level estimated from spectral signature of crop canopies. Sensor inputs included ambient illumination, camera parameters, and image histogram of three spectral regions (red, green, and near-infrared). The real-time sensor-based supplemental N treatment improved crop N status and increased yield over most plots. The largest yield increase was achieved in plots with low initial N treatment combined with supplemental variable-rate application. Yield data for plots where N was applied the latest in the season resulted in a reduced impact on supplemental N. For plots with no supplemental N application, yield increased gradually with initial N treatment, but any N application more than 101 kg/ha had minimal impact on yield.

  • PDF

Real-time Water Quality Prediction for Evaluation of Influent Characteristics in a Full-scale Sewerage Treatment Plant (하수처리장 유입수의 특성평가를 위한 실시간 수질예측)

  • Kim, Youn-Kwon;Chae, Soo-Kwon;Han, In-Sun;Kim, Ju-Hwan
    • Journal of Environmental Impact Assessment
    • /
    • v.19 no.6
    • /
    • pp.617-623
    • /
    • 2010
  • It is the most important subject to figure out characteristics of the wastewater inflows of sewerage treatment plant(STP) when situation models are applied to operation of the biological processes and in the automatic control based on ICA(Instrument, Control and Automation). For the purposes, real-time influent monitoring method has been applied by using on-line monitoring equipments for the process optimization in conventional STP. Since, the influent of STP is consist of complex components such as, COD, BOD, TN, $NH_4$-N, $NO_3$-N, TP and $PO_4$-P. MRA2(Microbial Respiration Analyzer 2), which is capable of real-time analyzing of wastewater characteristics is used to overcome the limitations and defects of conventional online monitoring equipments in this study. Rapidity, accuracy and stability of developed MRA2 are evaluated and compared with the results from on-line monitoring equipments for seven months after installation in Full-scale STP.