• Title/Summary/Keyword: Impact Sound Source

Search Result 96, Processing Time 0.025 seconds

Floor Impact Noise Characteristics Depending on the Experimental Conditions Using Impact Ball (실험조건에 따른 임팩트 볼의 바닥충격음 변화 고찰)

  • Lee, Won-Hak;Haan, Chan-Hoon
    • The Journal of the Acoustical Society of Korea
    • /
    • v.30 no.2
    • /
    • pp.92-99
    • /
    • 2011
  • In Japan, bang machine has been considered to have problems about not only the impact force and frequency response which are different from the real impact sources such as children's jumping and running, but also damage in the wooden structure housing. Therefore, a new impactor for lower impact force to prevent demage in wooden structure housing was developed. The impact ball was adopted as the second standard impact source in JIS A 1418-2 and ISO 140-11. In the present study, floor impact sounds generated by impact ball with drop heights in four floors of mock-up building of Building Research Institute (BRI) similar to typical Japanese wooden structure housing were investigated and also compared to jumping sound. The results show that Impact ball sound dropped at 10 cm to 30 cm was most similar to jumping sound. And The impact sound levels at 250 and 500 Hz were more sensitive to drop height than other lower frequencies. The error that may occur from the difference of height of 10 cm up and down based on the standard drop height caused by the impact ball operated by human hands was approx. 1 dB or less only in its value of characteristic, but it must be carefully taken into Impact ball in the Korea Standard.

A Study on the Improvement of Reverberation Room's Performance (잔향실 성능 검증 및 향상 연구)

  • Kim, Sung-Hoon;Joo, Won-Ho;Kim, Dong-Hae;Bae, Jong-Guk
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.171-175
    • /
    • 2006
  • Recently, two reverberation rooms were built up of 300mm thick concrete walls in non-parallel pentagonal shape to measure the sound absorption, transmission, radiation, and impact insulation of acoustical materials, panels, doors, etc. Various acoustic tests, including the sound transmission test, were carried out to investigate their acoustic performances. In order to improve the performance, several modifications on these acoustical parameters, such as the acoustic mode, the position of specimen, the formation of diffuse field, the location of sound source, and flanking transmission, have been conducted. Through a series of tests, the reverberation rooms have been effectively improved so that it could perform a variety of acoustic tests with the international standard. And then, it is expected to be very helpful in developing the low noise design technology for ships.

  • PDF

Integrated Solid Waste Management for the Environmentally Sound and Sustainable Development (환경적으로 지속가능한 개발을 위한 폐기물의 통합적 관리 방안)

  • Hong, Sang-Pyo;Nam, Kie-Chang
    • Journal of Environmental Impact Assessment
    • /
    • v.9 no.1
    • /
    • pp.87-98
    • /
    • 2000
  • The costs of solid waste management have continued to increase. Stricter environmental regulations have been applied to waste management units. Future integrated solid waste management should be balanced between source reduction, recycling, energy recovery, and land disposal. To achieve more balanced solid waste management programs, more local governments must adopt diversion and recycling goals and finance to meet those goals. The hierarchy of integrated solid waste management must be enforced in a manner that is flexible enough to allow local governments to implement waste management facilities that match the communities' ability to pay for them. In establishing a hierarchy of integrated solid waste management, local governements have difficulties in implementing source reduction and recycling because of a lack of local control and inability to pay for new facilities. Integrated solid waste management involves selecting compatible options for facilities to manage the collection, recovery of energy and materials(transformation), and disposal of solid wastes efficiently. Waste Collection, transformation, and disposal must support source reduction and recycling activities.

  • PDF

A Study for Examination of Road Noise Prediction Results According to 3-d Noise Prediction Models and Input Parameters (3차원 소음예측모델 및 입력변수 변화에 따른 도로소음 예측결과 검토에 대한 연구)

  • Sun, Hyosung
    • Journal of Environmental Impact Assessment
    • /
    • v.23 no.2
    • /
    • pp.112-118
    • /
    • 2014
  • The application of a 3-d noise prediction model is increasing as a tool for performing actual noise assessment in order to investigate the noise impact of the residential facility around a development region. However, because the appropriate plans of applying a 3-d noise prediction model is insufficient, it is important to secure the reliability of the noise prediction results generated by a 3-d noise prediction model. Therefore, this study is focused on examining a 3-d noise prediction model, and a prediction equation and input data in it. For this, the 3-d noise prediction models such as SoundPLAN, Cadna-A, IMMI is applied in road noise. After the contents of road noise equations, input data of road noise source, and input data of road noise barrier are understood, the road noise prediction results are compared and examined according to the variation of 3-d noise prediction model, road noise equation, and input data of road noise source and road noise barrier.

Comparison of Impact Sound Insulation Performances of Apartment Floors Against Heavy-weight Impact Sources via Field Measurement Data (공동주택 현장 측정자료를 활용한 중량충격원의 바닥충격음 차단성능 비교)

  • Yun, Chang-Yeon;Yeon, Jun-Oh;Kim, Myung-Jun
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.24 no.8
    • /
    • pp.651-658
    • /
    • 2014
  • Notification 2013-611 of MOLIT has come into effect. It relates primarily to new standard impact source. In this study, an in-depth experimental analysis of the difference between a bang machine and an impact ball was performed via field testing of shear wall and flat plate structure at 51 sites. This paper focuses on the difference in single number quantities between a bang machine and an impact ball. At wall thicknesses of 180 and 210 mm in shear wall structure, the single number quantities exhibited differences of 3.1 and 4.5 dB, respectively, and at thicknesses exceeding 250 mm in flat plate structure, the difference was constant at 4.6 dB. With regard to flat plate structures, the single-index difference increased up to 11 dB as the thickness of the floor slab increased. In general, the highest level of contribution for the bang machine was 63 Hz, irrespective of thickness determining bandwidth. The highest level for the impact ball were 63 Hz and 125 Hz. In future research, when reviewing additional field performance measurement data, it will be necessary to consider a detailed examination instead of the current method of uniformly adding 3 dB for all thicknesses and types of structures.

A study of the Indoor-Impulse Noise Attenuation Effect for the Hearing Protection Devices (청각 보호 장구의 실내 충격소음 차음성능에 관한 연구)

  • Chung, Sung-Hak;Song, Kee-Hyeok
    • Journal of the Korea Society of Computer and Information
    • /
    • v.19 no.5
    • /
    • pp.37-42
    • /
    • 2014
  • The objective of this study is the frequency of the noise source 170 dB level of impulsive sound attenuation performance by earplugs to identify, to analyze the frequency characteristics of a shape and pattern. The attenuation performance of the impulsive noise by the frequency levels on the Combat Arm and 3M Form types 1100 Earplugs were evaluated. In order to check the sound attenuation performance of the B&K head and torso simulator and sound attenuation performance of the ear simulator data was verified. Previous studies have most impact, even in the noise source and the impulse noise level is 140 dB, but this study is higher than that of the impulsive noise source features. The results of the impulse noise attenuation effect is frequency-dependent mean 28.58 dB.

Study on Error Correction of Impact Sound Position Estimation Using Ray Tracing (음선 추적을 이용한 폭발음 위치추정 오차 보정에 대한 연구)

  • Choi, Donghun;Go, Yeong-Ju;Lee, Jaehyung;Na, Taeheum;Choi, Jong-Soo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.26 no.1
    • /
    • pp.89-96
    • /
    • 2016
  • TDOA(time delay of arrival) position estimate from acoustic measurement of artillery shell impact is studied in order to develop a targeting evaluation system. Impact position is calculated from the intersections of hyperbolic estimates based on the least square Taylor series method. The mathematical process of Taylor series estimation is known to be robust. However, the concern lays with the accuracy because it is sensitive to the bias caused by the randomness of measurement situation. The measurement error typically occurs from the distortion of waveform, change of travelling path, and sensor position error. For outdoor measurement, a consideration should be made on the atmospheric condition such as temperature and wind which can possibly change the trajectories of rays of sound. It produces wrong propagation time events accordingly. Ray tracing and optimization techniques are introduced in this study to minimize the bias induced by the ray of sound. The numerical simulation shows that the atmospheric correction improves the estimation accuracy.

A Study on Noise and Vibration Characteristics of Pipe Structures (파이프 구조물의 소음 및 진동특성 연구)

  • 류봉조;임경빈;이규섭;송영봉;공용식;오부진
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.334-337
    • /
    • 2002
  • The paper presents noise and vibration characteristics of three kinds of pipe materials (PVC pipe, cast-iron pipe and newly developed pp pipe). In order to measure structure bone noise, impact force using small balls was applied to earth pipe. It was confirmed that structure bone noise can be reduced by more large damping materials. Also, transmission loss of pipes depending on the frequency ranges was investigated by using sound source through speakers.

  • PDF

Force Identification and Sound Prediction of a Reciprocating Compressor for a Refrigerator (냉장고용 왕복동식 압축기의 가진력 규명 및 방사소음 예측)

  • Kim, Sang-Tae;Jeon, Gyeoung-Jin;Jeong, Weui-Bong
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.22 no.5
    • /
    • pp.437-443
    • /
    • 2012
  • In this paper, the hybrid method to identify the exciting forces and radiated noise generated from the reciprocating compressor was presented. In order to identify the exciting force, both the acceleration data measured at the compressor shell and numerical finite element model for the full set of compressor were used simultaneously. Applying the identified exciting forces to the numerical model, the velocity responses of all nodes at the shell were predicted. Finally the radiated noises from the vibrating shell were predicted by using the direct boundary element acoustic analysis. For precise numerical modeling, the stiffness of rubber mounts and body springs were identified experimentally from the natural frequencies measured by impact testing. The error of over-all sound pressure level between predicted noise and measured noise was about 2.9 dB.