• Title/Summary/Keyword: Impact Loading Cycle

Search Result 20, Processing Time 0.024 seconds

Comparison of the Fatigue Behaviors of FRP Bridge Decks and Reinforced Concrete Conventional Decks Under Extreme Environmental Conditions

  • Kwon, Soon-Chul;Piyush K. Dutta;Kim, Yun-Hae;Anido, Roberto-Lopez
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.1
    • /
    • pp.1-10
    • /
    • 2003
  • This paper summarizes the results of the fatigue test of four composite bridge decks in extreme temperatures (-30$^{\circ}C$ and 50$^{\circ}C$ ). The work was performed as part of a research program to evaluate and install multiple FRP bridge deck systems in Dayton, Ohio. A two-span continuous concrete deck was also built on three steel girders for the benchmark tests. Simulated wheel loads were applied simultaneously at two points by two servo-controlled hydraulic actuators specially designed and fabricated to perform under extreme temperatures. Each deck was initially subjected to one million wheel load cycles at low temperature and another one million cycles at high temperature. The results presented in this paper correspond to the fatigue response of each deck for four million load cycles at low temperature and another four million cycles at high temperature. Thus, the deck was subjected to a total of ten million cycles. Quasi-static load-deflection and load-strain responses were determined at predetermined fatigue cycle levels. Except for the progressive reduction in stiffness, no significant distress was observed in any of the composite deck prototypes during ten million load cycles. The effects of extreme temperatures and accumulated load cycles on the load-deflection and load-strain response of FRP composite and FRP-concrete hybrid bridge decks are discussed based on the experimental results.

Application of SWMM for Reduction of Runoff and Pollutant Loading in LID Facilities (LID시설의 유출량 및 오염부하 저감효율평가를 위한 SWMM모델의 적용)

  • Jung, Kwang-Wook;Jung, Jong-Suk;Park, Jin-Sung;Hyun, Kyoung-Hak
    • Land and Housing Review
    • /
    • v.8 no.4
    • /
    • pp.249-256
    • /
    • 2017
  • Urbanization can be remarkable affected flood, pollutant loading, ecological system, and green infrastructure by distortion of hydrologic cycle. In order to mitigate these problems in urban, Low Impact Development(LID) technique has been introduced and applied in the world. SWMM model was calibrated with sets of field monitoring data and applied for calculation of runoff and pollutant loading in Asan-tangjung LID city under 2016 rainfall. Runoff reduction of watershed and catchment basins were showed efficiency 12.2% and 62.0%, respectively. Reduction of COD and TP loading also high efficiency in catchment basins were evaluated 74.9 and 71.4%. The results of this study can be used effectively in decision making processes of urban development project by comparing watershed runoff and pollutant reduction by designs of sort of LID technique, LID volume and location.

Radiological Impact Assessment for the Domestic On-road Transportation of Radioactive Isotope Wastes (방사성동위원소 폐기물의 국내육상운반에 관한 방사선영향 평가)

  • Seo, Myunghwan;Hong, Sung-Wook;Park, Jin Beak
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.14 no.3
    • /
    • pp.279-287
    • /
    • 2016
  • Korea Radioactive Waste Agency (KORAD) began to operate the low and intermediate level radioactive waste disposal facility in Gyeongju and to transport the radioactive waste containing radioactive isotopes from Daejeon to the disposal facility for the first time at 2015. For this radioactive waste transportation, in this study, radiological impact assessment is carried out for workers and public. The dose rate to workers and public during the transportation is estimated with consideration of the transportation scenarios and is compared with the Korean regulatory limit. The sensitivity analysis is carried out by considering both the variation of release ratios of the radioactive isotopes from the waste and the variation of the distances between the radioactive waste drum and worker during loading and unloading of radioactive waste. As for all the transportation scenarios, radiological impacts for workers and public have met the regulatory limits.

Biomechanical Analysis of the Elderly Gait with a Walking Assistive Device (노인의 보행보조기구 사용 보행시 보행패턴의 변화연구)

  • Yoon, Suk-Hoon
    • Korean Journal of Applied Biomechanics
    • /
    • v.17 no.2
    • /
    • pp.1-9
    • /
    • 2007
  • Walking is not only an essential component of the human mobility, but also is a good exercise. Inability to walk freely can reduce an individual's quality of life and independence substantially. Being a relatively low impact activity, walking is particularly good for the elderly and research has shown that regular walking in the elderly reduces the chance of fall-related injuries and mental diseases as well. In spite of the documented benefits of regular walking, it is still difficult to walk without the aid of assistive devices for the frail elderly who have lower extremity problems. Assistive walking devices(AWD), such as crutches, canes, hiking-poles, T-Poles and walkers, are often prescribed to the elderly to make their walking be safe and efficient. Many researchers have demonstrated the effects of AWDs such as reducing lower extremity loading, improved dynamic/gait stability, yet, no study has been done for gait pattern when the elderly gait with AWDs. Therefore, the purpose of this study was to examine whether T-Poles, one of the AWDs, change the elderly gait pattern. Eight community-dwelling female elderly participated in this study. Laboratory kinematics during walking with T-Poles(PW) and with out T-Poles(NPW) was assessed. PW showed significant increase in step width, stride length, gait velocity and decrease in swing time. No significances were found in lower body joint angles but meaningful trend and pattern were found. Maybe the reason was due to the participants. Our participants were healthy enough so that the effect of T-Poles was minimum. PW also showed typical gait phases which are no single support phase during a gait cycle. It indicates that walking with T-Poles may guarantee safe and confident walking to the frail elderly.

The Influence of Diet, Body Fat, Menstrual Function, and Activity upon the Bone Density of Female Gymnasts (신체구성성분, 영양상태 및 월경기능이 여자체조선수의 골밀도에 미치는 영향(제2보))

  • 우순임
    • Journal of Nutrition and Health
    • /
    • v.32 no.1
    • /
    • pp.50-63
    • /
    • 1999
  • This study was conducted with 20 female gymnasts and 23 age-matched controls to examine the relationship of diet, menstrual function and bone mineral density (BMD). The results obtained are summarized as follows : Energy intake of gymnasts was 968.9$\pm$421.4kcal, and energy expenditure was 2091.4$\pm$361kcal showing negative energy balance(-1,122.5$\pm$534.6kcal). The average intakes of calcium, iron, vitamin A, thiamin, riboflavin and niacin did not meet the Recommended Dietary Allowances for their age groups. Mean age at menarche in gymnasts is 15.8$\pm$1.2 years compared with 11.8$\pm$2.8 years in age-matched controls. The profile of estradiol, progesterone, and luteinizing hormone was lower than age-matched controls but not significant. Athletic amenorrheic gymnasts(n=12) have the menstrual irregularity(n=10) and amenorrhea(n=2). A number of variables as such nutritional deficiency in diet, negative energy blasnce and hypogonadotropic hormonal status were included. The bone mineral density (BMD) of female gymnasts were significantly higher than controls for the lumbar neck(p<0.001), trochanter(p<0.01), and Ward's triangle(p<0.001), but there were no significant differences for the lumbar spine and forearm. The lumbar spine BMD had a positive correlation with age and lean body weight. The femoral neck BMD was significantly associated with age, group and lean body mass. The trochanter BMD had significant relationship with group, body mass index, energy expenditure and follicular stimulating hormone. Ward's triangle BMD were related to body mass index and follicular stimulating hormone. The significant association was deterced between forearm BMD and age and lean body weight. The major finding of this investigation is that the BMD of gymnasts were higher than age-matched controls despite the fact that gymnasts as a group had inadequate dietary calcium and a higher propensity to have an interruption of their menstrual cycle. These data indicate that grymnsts involved in sports producing significant impact loading on the skeleton had greater femoral neck, trochanter and Ward's triangle bone density than age-matched controls.

  • PDF

Parametric Study on Long-Term Deflections of Flat Plates Considering Effects of Construction Loads and Cracking (시공하중 및 균열 효과를 고려한 플랫 플레이트의 장기 처짐에 대한 변수 연구)

  • Choi, Seung Min;Eom, Tae Sung;Kim, Jea Yo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.16 no.1
    • /
    • pp.44-54
    • /
    • 2012
  • The structural designs of RC flat plates that have no flexural stiffness by boundary beams may be governed not by strength conditions but by serviceabilities. Specially, since over-loading and tensile cracking in early-aged slabs significantly increase the immediate and long-term deflections of a flat plate system, a construction sequence and its impact on the slab deflections may be decisive factors in designs of flat plate systems. In this study, the procedure of calculating slab deflections with considering construction sequences, concrete cracking, and long-term effects is proposed. Using the proposed method, the parametric study for deflections of flat plates is performed. With various conditions for slab construction cycle, the number of shored floors, tensile or compressive reinforcement ratio, compressive strength of concrete, construction live load, and slab thickness, the immediate deflection during construction and long-term deflections after completion are analyzed. The calculated results are compared with the serviceability limits offered by the structural design code.

A Structural Analytic Evaluation of a Connote Pad In a Spent Fuel Dry Storage Cask (사용후핵연료 건식저장용기의 콘크리트 받침대에 대한 구조해석평가)

  • Kim Dong-Hak;Seo Ki-Seog;Lee Ju-Chan;Lee Yeon-Do;Cho Chun-Hyung;Lee Dae-Ki
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.4 no.2
    • /
    • pp.139-152
    • /
    • 2006
  • A spent fuel storage cask is required to prove the safety of a canister under a hypothetical accidental drop condition. A hypothetical accidental drop condition means that a canister is assumed to be a lee drop on to a pad of the storage cask during loading it into a storage cask. A pad of the storage cask absorbs shock to maintain the structural integrities of a canister under a hypothetical accidental drop condition. In this paper a finite element analysis for various pad structures was carried out to improve the structural integrity of a canister under a hypothetical accidental drop condition. A pad of a storage cask was designed a steel structure with concrete. The 1/4 height of a pad was modified with a structure composed of a steel and a polyurethane foam as a impact limiter. The effect of a shape of a steel structure was studied. The effects of the thickness of a steel structure and the density of a polyurethane foam was also studied.

  • PDF

Preliminary Assessment of Radiological Impact on the Domestic Railroad Transport of High Level Radioactive Waste (고준위 방사성폐기물의 국내철도운반에 관한 방사선영향 예비평가)

  • Seo, Myunghwan;Dho, Ho-Seog;Hong, Sung-Wook;Park, Jin Beak
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.15 no.4
    • /
    • pp.381-390
    • /
    • 2017
  • In Korea, commercial nuclear power plants and research reactors have on-site storage systems for the spent nuclear fuel, but it is difficult to expand the facilities used for the storage systems. If decommissioning of nuclear power plants starts, an amount of high level radioactive waste will be generated. In this study, a radiological impact assessment of the railroad transport of high level radioactive waste was carried out considering radiation workers and the public, using the developed transport container as the transport package. The dose rates for workers and the public during the transport period were estimated, considering anticipated transport scenarios, and the results compared with the regulatory limit. A sensitivity analysis was also carried out by considering the different release ratios of the radioactive materials in the high level radioactive waste, and different distances between the transport container and workers during loading and unloading phases and while attaching another freight car. For all the anticipated transport scenarios, the radiological impacts for workers and the public met the regulatory limits.

Analysing the effect of impervious cover management techniques on the reduction of runoff and pollutant loads (불투수면 저감기법의 유출량 및 오염부하량 저감 효과 분석)

  • Park, Hyung Seok;Choi, Hwan Gyu;Chung, Se Woong
    • Journal of Environmental Impact Assessment
    • /
    • v.24 no.1
    • /
    • pp.16-34
    • /
    • 2015
  • Impervious covers(IC) are artificial structures, such as driveways, sidewalks, building's roofs, and parking lots, through which water cannot infiltrate into the soil. IC is an environmental concern because the pavement materials seal the soil surface, decreasing rainwater infiltration and natural groundwater recharge, and consequently disturb the hydrological cycle in a watershed. Increase of IC in a watershed can cause more frequent flooding, higher flood peaks, groundwater drawdown, dry river, and decline of water quality and ecosystem health. There has been an increased public interest in the institutional adoption of LID(Low Impact Development) and GI(Green Infrastructure) techniques to address the adverse impact of IC. The objectives of this study were to construct the modeling site for a samll urban watershed with the Storm Water Management Model(SWMM), and to evaluate the effect of various LID techniques on the control of rainfall runoff processes and non-point pollutant load. The model was calibrated and validated using the field data collected during two flood events on July 17 and August 11, 2009, respectively, and applied to a complex area, where is consist of apartments, school, roads, park, etc. The LID techniques applied to the impervious area were decentralized rainwater management measures such as pervious cover and green roof. The results showed that the increase of perviousness land cover through LID applications decreases the runoff volume and pollutants loading during flood events. In particular, applications of pervious pavement for parking lots and sidewalk, green roof, and their combinations reduced the total volume of runoff by 15~61 % and non-point pollutant loads by TSS 22~72 %, BOD 23~71 %, COD 22~71 %, TN 15~79 %, TP 9~64 % in the study site.

Calculations of Flat Plate Deflections Considering Effects of Construction Loads and Cracking (시공하중 및 균열 효과를 고려한 플랫 플레이트의 처짐 산정)

  • Kim, Jae-Yo;Im, Ju-Hyeuk;Park, Hong-Gun
    • Journal of the Korea Concrete Institute
    • /
    • v.21 no.6
    • /
    • pp.797-804
    • /
    • 2009
  • The structural designs of RC flat plates that have insufficient flexural stiffness due to lack of support from boundary beams may be governed by serviceability as well as a strength criteira. Specially, since over-loading and tensile cracking in early-aged slabs significantly increase the deflection of a flat plate system under construction, a construction sequence and its impact on the slab deflections may be decisive factors in designs of flat plate systems. In this study, the procedure of calculating slab deflections considering construction sequences and concrete cracking effects is proposed. The construction steps and the construction loads are defined by the simplified method, and then the slab moments, elastic deflections, and the effective moment of inertia are calculated in each construction step. The elastic deflections in column and middle strips are magnified to inelastic deflections by the effective moment of inertia, and the center deflection of slab are calculated by the crossing beam method. The proposed method is verified by comparisons with the existing test result and the nonlinear analysis result. Also, by applications of the proposed method, the effects of the slab construction cycle and the number of shored floors on the deflections of flat plates under construction are analyzed.