• Title/Summary/Keyword: Impact Fracture Toughness

Search Result 185, Processing Time 0.033 seconds

Impact and Wear Behavior of Side Plate of FRP Ship (FRP선박 외판재의 충격 및 마모 거동)

  • Kim, H.J.;Kim, J.D.;Koh, S.W.;Kim, Y.S.
    • Journal of Power System Engineering
    • /
    • v.13 no.6
    • /
    • pp.123-128
    • /
    • 2009
  • The effects of temperature and initial crack length on the impact fracture behavior for the side plate material of FRP ship were investigated. And the effects of the counterpart roughness and sliding distance on the volumetric wear of same material were investigated as well. Impact fracture toughness of GF/PE composites displayed maximum value when the temperature of specimen is room temperature and $50^{\circ}C$, and with decreasing the temperature of specimen, impact fracture toughness decreased. Impact fracture energy of GF/EP composites decreased with increasing the initial crack length of specimen, and this value decreased rapidly when the temperature of specimen is lowest, $-25^{\circ}C$. It is believed that sensitivity of notch on impact fracture energy were increased with decreasing the temperature of specimen. With increasing the sliding distance, the transition sliding distance, which displayed different aspect on the friction coefficient and the volumetric wear loss, were found out. Counterpart roughness had a big influence on the wear rate at running in period, however the effect of counterpart roughness became smaller with sliding speed increase in. Volumetric wear loss were increased with increasing the applied load and the counterpart roughness.

  • PDF

The study on dynamic fracture toughness of friction-welded M.E.F. dual phase steel (복합조직강의 마찰용접부에 대한 동적파괴특성)

  • 오세욱;유재환;이경봉
    • Journal of Welding and Joining
    • /
    • v.7 no.3
    • /
    • pp.19-27
    • /
    • 1989
  • Both the SS41 steel and the M.E.F(martensite encapsulated islands of frrite) dual phase steel made of SS41 steel by heat treatment were welded by friction welding, and then manufactured machinemade Vnotch standard Charpy impact specimens and precracked with a fatigue system at BM(base metal), HAZ(heat affected zone) and WZ(weld interface Zone). The impact test of them was performed with an instrumented impact test machine at a number of temperatures in constant loading velocity and the dynamic fracture characteristics were studied on bases of the absorbed energy, dynamic fracture toughness and fractography from the test. The results obtained are as follows; At the room temperature, the absorbed energy is HAZ.geq.WZ.geq.BM in case of the M.E.F. dual phase steel: BM.geq.HAZ.geq.WZ in case of the SS41 steel, HAZ.geq.BM.geq.WZ at the low temperature. The absorbed energy is decreased markedly with the temperature lowering; it is highly dependent on the temperature. The dynamic fracture toughness of the M.E.F. dual phase steel is HAZ.geq.WZ.geq.BM at the room temperature; BM.geq.WZ.geq.HAZ below-60.deg. C. Therefore the reliability of friction welding is uncertain at the low temperature(below-60.deg. C). The dynamic fracture toughness of the SS41 steel; HZA.geq.WZ.geq.BM at overall temperature region. The flaw formed by rotational upsetting pressure was shown y SEM; in this region. The absorbed energy per unit area and dynamic fracture toughness were low relative to other region.

  • PDF

Determination of Dynamic Fractrue Toughness for very Brittle Materials (매우 취성인 재료의 동적 파괴인성치 결정법)

  • 이억섭;한유상
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.04a
    • /
    • pp.724-728
    • /
    • 1996
  • The instrumented Charpy impact test is generally used to evaluate the dynamic fracture toughness for varying engineering materials. However, the test is known to be difficult to evaluate the dynamic fracture toughness for very brittle materials because of the small crack initiation load. To evaluate the dynamic fracture toughness of verybrittle materials, it is necessary to develop a load sensitive instrumented tup. In this study, a polymer tup, which has small Young's modulus, is used for the instrumented Charpyimpact test and a proper testing method is developed. The results show that the developed method can measure rapidly changing loads from the moment of contact between the tup and the specimen to dynamic crack initation of the very brittle materials.

  • PDF

Fracture Toughness Evaluation for Main Feed Water Valves of Korean Standard Nuclear Power Plant (한국표준원전 주급수 밸브의 파괴인성 평가)

  • Yoon, Ji-Hyun;Hong, Seokmin;Lee, Bong-Sang
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.11 no.1
    • /
    • pp.39-44
    • /
    • 2015
  • The fracture toughness of 2.25Cr-1Mo cast steel (SA217-WC9) samples which were taken from the check valves of feed water piping of Korean Standard Nuclear Power Plant(KSNPP) was measured by Master Curve method. The measured $T_0$ reference temperature of SA217-WC9 steel was $-30^{\circ}C$. The obtained $T_0$ was compared to the derived value from Charpy impact test data following to SINTEP procedure. The heat-to-heat variation in fracture toughness of SA217-WC9 steel was observed. It was found that the low toughness of a heat of SA217-WC9 steel was attributed to the coarse MnS inclusion originated by high sulfur content as the results of microanalyses.

The dynamic fracture toughness of aluminum alloy weld zone by instrumented charpy test (計裝化 샬피 시험법 에 의한 알루미늄 합금 용접부 의 동적파괴 인성)

  • 문경철;강락원;이준희
    • Journal of Welding and Joining
    • /
    • v.3 no.2
    • /
    • pp.42-51
    • /
    • 1985
  • The dynamic fracture toughness, fracture characteristics, impact tension and tensile properties of Al-Mg-Si T5 alloy and Al-Zn-Mg T6 alloy respectively welded with filler metal of Alcan 4043 were investigated. The dynamic fracture toughness values were obtained rapidly and simply for the specimen of small size by using instrumented Chirpy impact testing machine. the testing temperatures of the specimen were a range of room temperature and-196.deg. C. The results obtained in this experiment are summarized as follows. With decreasing the testing temperatures, dynamic tensile stress and fracture load were increased, on the other hand the deflection and impact value showed decreasing tendency in order of base metal>HAZ>weld. Changes of total absorbed energy were more influenced by the crack propagation energy than the crack initiation energy. At the low temperatures, the unstable rapid fracture representing the crack propagation appeared for the specimens of Charpy press side notched in Al-Zn-Mg alloy, but it was difficult to obtain the unstable rapid fracture in Al-Mg-Si alloy. Because of the development of plastic zone at the notch root, it was difficult to obtain thevalid $K_{1d}$ value in Al-Mg-Si alloy. Therefore the fatigue cracked specimens were effective in both Al-Mg-Si and Al-Zn-Mg alloys. With decreasing the impact testing temperatures, specimens underwent a transition from dimple-type transgranular fracture to lamella surface-type intergranular fracture because of the precipitate at the grain boundaries, impurities and crystal structure of the precipitates.s.

  • PDF

A Study on the Dynamic Fracture Toughness of Welding Structural Steels by Instrumented Impact Testing (계장화 충격시험법에 의한 구조용강 용접부의 동적 파괴인성에 관한 연구)

  • 김헌주;김경민;윤의박
    • Journal of Welding and Joining
    • /
    • v.11 no.1
    • /
    • pp.42-51
    • /
    • 1993
  • In this study, investigations were conducted in calculating parameters of elastic-plastic fracture mechanics using single specimen. The validity of these testing methods was judged by the confirmation of multiple specimen method of stop block test. The results were as follows: In order to measure a fracture toughness using the instrumented impact test, two general requirement must be considered; One, setting up proper impact velocity considered the effect of loading and the other, the necessity of low blow test for obtaining true energy by the compliance correction. It was possible to detect a crack initiation point by calculating the compliance changing rate from a load-defection curve. Criterion of a stable crack growth, $T_{mat}$ could be estimated by using key-curve method for a base metal. and combining Kaiser's rebound compliance with Paris-Hutchison's $T_{appl}$ equation for the brittled zone of welding heat affected.at affected.d.

  • PDF

Analysis of Economical Validity for Implementation of Telematics in Construction Fields (Telematics 기술의 건설현장 적용을 위한 경제적 타당성 분석)

  • Lee Sung Hyun;Lee Dong Wook;Koo Ja Kyung;Lee Tai Sik
    • Journal of the Korean Society for Railway
    • /
    • v.8 no.5
    • /
    • pp.444-453
    • /
    • 2005
  • The safety evaluations of railway wheelsets make use of the static fracture toughness obtained in ingot materials. The static fracture toughness of wheelset materials has been extensively studied by experiments, but the dynamic fracture toughness with respect to wheelset materials has not been studied enough yet. It is necessary to evaluate the characteristics of the fracture mechanics depending on each location for a full-scale wheelset for high-speed trains, because the load state for each location of the wheelset while running is different the contact load between the wheel and rail, cyclic stress in the wheel plate, etc. This paper deals with the fracture toughness depend on load rates. The fracture toughness depending on load rate data shows that once the downward curve from quasi-static values was reached, subsequent values showed a slow increase with respect to the impact velocity. This means that dynamic fracture toughness should be considered in the design code of the wheelset material.

Mechanical behaviors of concrete combined with steel and synthetic macro-fibers

  • Deng, Zongcai;Li, Jianhui
    • Computers and Concrete
    • /
    • v.4 no.3
    • /
    • pp.207-220
    • /
    • 2007
  • In this paper, hybrid fibers including high elastic modulus steel fiber and low elastic modulus synthetic macro-fiber (HPP) as two elements were used as reinforcement materials in concrete. The flexural toughness, flexural impact and fracture performance of the composites were investigated systematically. Flexural impact strength was analyzed with statistic analyses method; based on ASTM and JSCE method, an improved flexural toughness evaluating method suitable for concrete with synthetic macro-fiber was proposed herein. The experimental results showed that when the total fiber volume fractions ($V_f^a$) were kept as a constant ($V_f^a=1.5%$), compared with single type of steel or HPP fibers, hybrid fibers can significantly improve the toughness, flexural impact life and fracture properties of concrete. Relative residual strength RSI', impact ductile index ${\lambda}$ and fracture energy $G_F$ of concrete combined with hybrid fibers were respectively 66-80%, 5-12 and 121-137 N/m, which indicated that the synergistic effects (or combined effects) between steel fiber and synthetic macro-fiber were good.

Mechanical Properties & Fracture Toughness of Austempered Gray Cast Iron(AGI) by Permanent Mould Casting (금형주조한 오스템퍼 회주철의 기계적성질 및 파괴인성)

  • Yi, Young-Sang;Lee, Ha-Sung;Kang, Dong-Myeong
    • Journal of Korea Foundry Society
    • /
    • v.15 no.3
    • /
    • pp.291-297
    • /
    • 1995
  • The mechanical properties and fracture toughness of permanent mold cast austempered gray cast iron(AGI) were compared to those of sand cast AGI. The iron was melted to eutectic composition in order to get better castability especially in permanent mold casting. Specimens prepared for tensile, impact and fracture toughness test were austenitized at $900^{\circ}C$ and austempered at $270^{\circ}C$ and $370^{\circ}C$ for 1 hour. The strength, impact and fracture toughness of permanent mold cast AGI were found to be superior to those of sand cast AGI. The maximum value of 836 MPA in tensile strength, was obtained at the austempering temperature of $270^{\circ}C$. But ductility of AGI was not improved by permanent mold casting.

  • PDF

Statistical Evaluation of Fracture Characteristics of RPV Steels in the Ductile-Brittle Transition Temperature Region

  • Kang, Sung-Sik;Chi, Se-Hwan;Hong, Jun-Hwa
    • Nuclear Engineering and Technology
    • /
    • v.30 no.4
    • /
    • pp.364-376
    • /
    • 1998
  • The statistical analysis method was applied to the evaluation of fracture toughness in the ductile-brittle transition temperature region. Because cleavage fracture in steel is of a statistical nature, fracture toughness data or values show a similar statistical trend. Using the three-parameter Weibull distribution, a fracture toughness vs. temperature curve (K-curve) was directly generated from a set of fracture toughness data at a selected temperature. Charpy V-notch impact energy was also used to obtain the K-curve by a $K_{IC}$ -CVN (Charpy V-notch energy) correlation. Furthermore, this method was applied to evaluate the neutron irradiation embrittlement of reactor pressure vessel (RPV) steel. Most of the fracture toughness data were within the 95% confidence limits. The prediction of a transition temperature shift by statistical analysis was compared with that from the experimental data.

  • PDF